Systems and Computers in Japan, Vol. 27, No. 8. 1996

Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. 178-D-11, No. 9, September 1995, pp. 1383-1394

A Human Sys.tem Learning Model for Solving the Inverse
Kinematics Problem by Direct Inverse Modeling

Eimei Oyama

Mechanical Engineering Laboratory, Tsukuba, J apan 305

Taro Maeda and Susumu Tachi

Faculty of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan 113

SUMMARY

The problem of computing a human arm posture
that will take the hand to a desired hand position given
by vision is called an inverse kinematics problem. To
solve this problem, the human nervous system has a
system for solving the inverse kinematics problem
computing the proper joint angles from the desired
hand position.

Although the direct inverse modeling method is
popular for the acquisition of an inverse kinematics
model, a sufficient inverse model cannot be obtained
for such systems with many-to-one input-output cor-
respondence as a human arm system.

This paper, proposes a new model of a human
inverse kinematics solver which uses the learned
inverse model of the linearized model of the hu.man
arm. This inverse model transforms the hand position
érror fo the update vector of the joint angles. The
solver inverse kinematics problems by using the hand
position error feedback. The performance of the
solver is shown using numerical simulations.

. Key words: Human hand position; 0911“01_ learn-
Ing; inverse kinematics neural networks; direct mverse
modeling; output feedback inverse model.

53

1. Introduction

The problem of computing a human arm posture
that will take the human hand to a desired position
given by vision is a kind of inverse problem. In order
to solve the problem, an inverse kinematics solver, i.e.,
a system for solving an inverse kinematics problem,
computing the proper joint angles from the desired
hand position is necessary. A human forms the solver
in the human nervous system. How the human nerv-
ous system acquires the inverse kinematics solver is
one of the important problems in neuroscience. Al-
though some theoretical models were proposed, they
have a number of drawbacks.

A representative model of the solver solves
inverse kinematics problems by using a learned inverse
kinematics model which calculates a joint angle vector
that corresponds to the hand position.

A representative inverse kinematics model
learning method employed by many researchers uses a
target systems output as input to the inverse model can
uses the target systems input as the teaching signal of
the inverse kinematics model that is composed of a
learning element. This method called Direct Inverse
Modeling (DIM) by Jordan [1]. Kuperstein [2] and
Sakaguchi [3] proposed a model of a human inverse
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kinematics solver that uses an inverse kinematics model
learned by DIM. However, a sufficient inverse model
cannot be obtained by DIM when the correspondence
between the input and the output of the target system
is not one-to-one and is nonlinear [1]. There are many
joint angle vectors that correspond to one desired hand
position. The inverse kinematics problem of a human
arm is an ill-posed problem and cannot be solved by an
inverse kinematics model learned by DIM.

In this paper, we propose a new learning model
of the inverse kinematics solver that avoids the ill-
posedness of the inverse kinematics problem by a
modification of the target system. The relationship
between the infinitesimal change of the joint angle
vector and that of the hand position vector is linear.
A kind of inverse kinematics model which transforms
the desired change of the hand position to the update
vector of the joint angles can be obtained by using
DIM. The proposed inverse kinematics solver uses the
acquired inverse model of the linearized model of the
human arm as a hand position error feedback system
and finds an inverse kinematics solution through iter-
ative improvement.

The performance of the proposed method is
shown by numerical simulations. At this stage, the
proposed learning model still has some problems.
However, the model can solve inverse kinematics prob-
lems of redundant arms. It can be a basic model of
human inverse kinematics solver for discussion.

2. A Model of Human Hand Position
Conirol System

2.1. Formulation of problem

Let x be a n %X 1 hand position vector given by
the vision system and & be a m X 1 vector of joint
angle vector. The relationship between x and @ is
expressed as

z=1(8) ¢))

where f is a C! class function. When a desired hand
position vector x, is given, consider an inverse kine-
matics problem that calculates the joint angle vector
8 ; that satisfies

xa=1(6a) 2
fis C! class function. Assume that an ideal learning

element can approximate amy continucus function.
When the input of the learning element is ¢, let @(¢) be

54

the output of the element and @'(f) be the teaching
signal for the learning element. After teaching signals
§; (G =1,2,3,..) are given for the learning element as

D(t)=s, 3
then
D)= E(s;) 4

is established;E(sj) is the mean of Y and ®() is a C!
class function. By the generalization function of the
learning element, ®(¢) learned at representative points
t; ¢ = 1, 2,3, ..)in the input space ¢ can generate
correct outputs at the whole input space ¢.

Representative learning elements, for example,
the multilayer neural networks learned through back-
propagation learning [4], Albus’ CMAC [5], and Ko-
honen’s topographic mapping networks [6] satisfy Eq.
(4) approximately.

2.2. Assumption about human inverse kinema-
tics solver

Kawato et al. proposed the hierarchical infor-
mation processing model of the human voluntary
movement [7]. The model consists of the following
three informatijon processings: (I) trajectory planning
in the visual coordinates; (II) transformation of the tra-
jectory from visual coordinates to body coordinates;
and (III) control that generates motor commands to
realize the desired trajectory.

In . this paper, (II) coordinate transformation is
considered. When a target point in the visual place is
given, a human can move the hand to the point pre-
cisely by use of visual feedback. On the other hand,
the precision of the hand position is greatly deteri-
orated without the viewing of the hand [8]. Consider-
ing these facts, the possibility is only slight that the
human inverse kinematics solver depends mainly on
the relationship between the absolute hand position in
the visual coordinates and the absolute kinesthetic
information. Since the measurement precision of the
relative position and the change of the position is high
[9-11], we assume that the human inverse kinematics
solver is based on the relationship between the change
of the hand position vector in the visual coordinates
and the change of the joint angle vector in the body
coordinates. Kawato proposed a learning model that
acquires the Moore-Penrose Inverse of the Jacobian of
the human arm for coordinate transformation by using
the relationship between the vector of the change of



the hand position and that of the joint angle vector
[12]. However, since this learning model uses a com-
plex adaptive rule based on the steepest descent meth-
od, it has a drawback as a model of a human nervous
system.

Georgepoulos et al. found neurons in the motor
cortex of a rhesus monkey that become active at high
firing rate when the monkey moves its hand in a cer-
tain direction [13-15]. A population vector is defined
as the weighted sum of the peculiar direction of the
neuron. The weight is calculated based on the dif-
ference between the current firing rate of the cor-
responding neuron and the firing rate at rest. The
population vector predicted accurately the direction of
the hand movement. The length of the vector has a
strong relationship to the hand velocities. It is found
that the firing rates of these direction-sensitiveneurons
in the motor cortex changes as the starting point of the
hand changes [16].

Anderson et al. found the neurons which encode
the position of the visual target on the head coordi-
nates in the parietal association cortex [17]. Gentilucci
et al. found target-sensitive neurons in inferior pre-
motor cortex [18]. There are some developed models
and objections regarding Georgopoulos’ model [ 19-20].
However, there are neurons that have strong relation-
ships to the direction of the hand movement in the
parietal association cortex, the frontal association cor-
tex, and the primary motor cortex. The primary motor
cortex generates motor command based on the body
coordinates [21]. The coordinate transformation sys-
tem from the visnal coordinates to the body co-
ordinates must exist in these areas.

The vector of the change of the hand position or
that of the velocity of the hand position has the same
direction as the direction of the hand movement.
From the physiological viewpoint, the change of the
hand position is important in the human hand position
control. Since the active area of the motor cortex
changes according to the initial posture of the arm, the
joint angle vector also is an important information.

Let @ be the joint angle vector, x,; be the desired
hand position vector, Ax, be the desired change of the
hand position vector, and A, be the desired change of
the joint angle vector. In this paper, a learning model
of the human inverse kinematics solver that transforms
Ax, to A6, and generates the position command of the
joint angles sequentially is proposed.

It is clear that a human has an inverse kinematics
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model that is based on the relationship of the absolute
hand position and the absolute joint angle vector and
transforms the desired hand position to the joint angles
command directly. This type of inverse kinematics
model is not considered in this paper. After acquisi-
tion of the visual feedback system stated in section 2.3,
the inverse kinematics model can be obtained by feed-
back error learning scheme proposed by Kawato [7].

2.3. Output feedback inverse model

Bullock and Grossberg proposed a computational
model of the human arm control system that can ex-
plain Georgopoulos’ experimental results [22]. By us-
ing the error vector between the final goal of the hand
position x,, and the hand position x at the time ¢ is
defined as

e(t) = zae — (1), ®)

the desired hand position x,(¢) is updated sequentially.
If x(¢) is controlled successfully to track the desired
hand position x,(¢), the direction of e(f) is constant in
the reaching motion. Thus, Bullock and Grossberg
asserted that Georgopoulos’ results are explained.

We assume also that the desired trajectory is
calculated in the visual coordinates and the temporal
desired hand position is calculated sequentially at each
time of the motion.

Hereafter, we use discrete descriptions for mod-
eling of the human motion control system.

Let Az be the sampling interval; ¢, refers to the
time kAt. Hereafter, vector y(k) refers to the value of
the vector y at time ¢,. The sampling interval As is set
to 0.1-0.3 s that corresponds to the time delay between
the visual stimulus and the start of the visually guided
motion.

The change of the desired hand position is cal-
culated as

AxdB)=xb+1)— xolk) (6)

The hand position error is calculated as
e(k)=xq(k)— 2(k) (7

The desired change of the hand position including the
output error feedback is calculated as




Axd (k)= Adxk)+ Kelk) (8)
where K is an appropriate coefficient.

Let Af (k) be the update vector of the joint angle
vector that will correspond to the desired change of the
hand position Ax’4(k). By updating the joint angle
vector as

O(k+1)= (k) + 404 k) 9)

tracking control of the desired hand position x4(k) is
possible. Let J(8) be the Jacobian of the human arm
expressed as

J()=200) (10)
A# ,(k) can be calculated as follows:
A60k)=J*(8(k))dxs (k) 1D

where J*(0) is a generalized inverse of J(8).

We assume that the human nervous system ac-
quires a coordinate transformation system as Eq. (11)
by learning.

Let A be the infinitesimal change of the joint
angle vector and Ax be the corresponding change of
the hand position vector calculated as

Az = f(6 + A6) — f(6) (12)
When the joint angle vector changes smoothly,
Az = J(0)A6 (13)

is established approximately. Consider a learning ele-
ment for the coordinate transformation, the input of
which consists of @ and Ax. Let ®(8, Ax) be the output
of the learning element ®' (0, Ax) be the teaching sig-
nal for the learning element. By applying DIM to the
system described in Eq. (13), the teaching signal

#'(9, Az) = A (14)
is obtained. After off-line learning is conducted,
&(0, Az) =~ J*(6(k)) Az (15)

is obtained. The details of the learning will be illus-
trated in section 3. This learning element ®(6, Ax) can
be used as the coordinates system. By using the above
equations, the following hand position control system

56

Leaming
Element

x(k)

Fig. 1. Configuration of output feedback inverse
model.

can be obtained:

B(k+1) = 6(k)+ ABy(k)
Aby(k) = &8, Az))
~  JH(0(k)) Az (k)
Axi(k) = Aza(k) + Ke(k)
(16)
If K equals 1,
Az)(k) = zalk +1) — z(k) (17)

The hand position control system is expressed by
8(k + 1) = O(k) + J*(8(K))(za(k + 1) — £(6(K))) (18)

The above equation approximates the quasi-Newton
method.

The proposed inverse kinematics solver expressed
in Eq. (16) is not an ordinary inverse kinematics mod-
el. However, since it can calculate an output similar to
the inverse kinematics model as the result of iterative
improvements, we have named it the output feedback
inverse model [23]. We have also referred to the same
solver as the output error feedback inverse model. Here-
after, OFIM refers to the proposed inverse kinematics
solver.

Figure 1 shows the configuration of OFIM, where
2! indicates the control element that calculates a
previous value of a signal at Az time units in the past;
z - 1 indicates the control element that calculates a
change of a signal. Figure 2 shows the teaching signal
for the learning element in Eq. (14).

From the engineeringviewpoint, the output feed-
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Fig. 2. Teaching signal for learning element.

back inverse model does not have sufficient precision
and usually requires a long learning time. Kawato’s
learning method of a nonlinear feedback gain or our
improved model for engineering application can be
useful for practical application [7, 24].

2.4. Coordinate transformation system paying
attention to velocity and acceleration

The relationship between the velocity vector of

the joint angles and that of the hand position
& =J(6)8 (19)

is linear as well as Eq. (13). An inverse model of the

system as described in Eq. (19) can also be obtained by
DIM.

The relationship between the acceleration vector
of the joint angles and that of the hand position

i=J(6)8 + [a‘g—(:)é]é

(20)
also is linear paying attention to 8 and #. An inverse
model of the system as described in Eq. (20) can also
be obtained by using DIM. Inverse kinematics solvers
based on the above inverse models are presented in
Appendix 2.

2.5. Solution for static inverse kinematics

problems

This section considers a static inverse problem in
?Vhich a desired trajectory of the hand position and an
Initia] posture of the arm are not given, but a fixed
desired hand position is given.
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In order toe calculate the joint angle vector that
corresponds to the fixed desired hand position, first, an
initial joint angle vector is generated and a trajectory
that continuously connects the initialhand position and
the fixed desired hand position is calculated. Then, by
tracking the trajectory, OFIM can move the hand to
the fixed desired hand position and finally calculate the
joint angles vector that corresponds to the fixed desired
hand position.

When any joint reaches its stroke end or the Ja-
cobian of the arm becomes singular, OFIM cannot cal-
culate the joint angle vector. In such a case, a new
initial joint angle vector is generated by a uniform
random number generator and the above procedure is
repeated until the error becomes smaller than the
desired precision.

3. Learning of Coordinate Transforma-
tion System

In this section, the learning characteristics of the
neural networks ®(0, Ax) for the coordinate trans-
formation is presented.

3.1. Off-line learning by direct inverse model-
ing

In this paper, the term off-line learning refers to
learning which is conducted in motions generated when
a human does not intend to control the hand position.

When |A#@ | is sufficiently small, the approximate
equation (13) is established. Assume that ®(0, Ax) is
an ideal learning element. Let A8* be the change of

joint angle vector that satisfies Eq. (13). After the
learning based on Eq. (14),
&(0, Az) ~ F(A0") (21)

is established according to Eq. (4). When » is equal to
m and J(0) is a full rank matrix, A# that corresponds
Ax is unique:

&6, Az) ~ E(A0*) = J7(0)Az (22)

is obtained.

When » is smaller than m, there are numerous
numbers of A@* that satisfy Eq. (13); A8* can be
expressed by using Ax and m X 1 vector u that has no
correlation to Ax as follows:




AG" = A6*(Az,u)
= J*6)Azx — Jt(6)J(8))u
= J'(0)Az + (I — J*(6)J(9)) @
where J*(0) is a generalizéd inverse of J(@) and
J*(6) = JT(6)(J(6)JT(8))™* (4)

is the Moore-Penrose inverse of J(8); J* (0) can be ex-
pressed as

J*(6) = J*(8) + (I — J*(8)J(6))G(8) (25)

where G(8) is a m X m matrix. From Eq. (4),

&(6, Az) E(A6* (Az,u))

&

J*(8)Az + (I — J*+(0)J(8)) E(u)
(26)

i

is obtained;
J(0)®(0, Azx) = Az 27)

is established for any value of E(u); ®(6, Ax) is an
approximate inverse model of the system described in
Eq. (13). A coordinate transformation system can be
acquired by the teaching signal described in Eq. (14).

When rank(J(0)) is n, rank(I - J* (8)J(8)) is m - n.
From Eq. (26), A9* exists in the m - n dimensional
space on the Af space. Let dv be a volume element of
m - n-dimensional space where A#* ‘exists, and p(A0)
be the probability density function that describes the
distribution of A9. Equation (21) can be expressed as

&(6,Az) =~ E(A6*(Az,u))

Jo (A6 (Az, 1) A" (Aw, u)dv
fQ p(AG* (Az,u))dv

(28)

The region of integral 0 is the whole space where
AB*(Ax, u) distributes; p(A#) is 0 where |Af | is large.
In human usual movements without the intention con-
trolling the human hand position,

p(A8) = p(—A6) (29)
is established. Therefore
p(A67(0,u))A8" (0, u)dv
2(0.0) ~ 122 =1 (30)

fQ p(AB*(0,u))dv

is obtained. Since ®(8, Ax) can be developed as
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&(0, Azx) =

0®(0, Ax)

@(0’0)-1_[ 5A:1: ]Az:OAiE'f‘O(A:I:z)

(31)

O(Ax?) is the sum of higher-order terms of Ax in each
equation. From Egs. (26), (30), and (31), Eq. (15) is
established at least where |Ax| is sufficiently small.

In the human usual movements, p(A#) is a con-
stanl on a curved surface of an appropriate ellipsoid.
By using an appropriate m X m positive-definite sym-
metric matrix P and an appropriate scalar function g,
p(AB) can be expressed as

p(A0) = g(A6T P~ A9) (32)
It should be noted that if Eq. (32) is established and
the distribution of A@ is normal, the covariance ma-
trix of A# can be expressed as
E(A6A607T) = AP (33)
where A is an appropriate scalar. According to Ap-
pendix 1,
&0, Az)~ PJT(JPJT)" ' Az (34)
is established on the Ax region, where Ax used for the
learning is distributed.

The right-hand of Eq. (34) is the solution of Eq.

(13) that will minimize the performance index S de-
fined by

S=5A6TP A8 (35)

If P is a diagonal matrix, the performance index can be
expressed as

5= (36)

Y| —

O\ AB?
; Py

From the fact that the above performance index is
minimized it can be interpreted that a joint that
moves well in usual motions, moves well to satisfy Eq.
(13). If the desired hand position x (k) changes
smoothly, it is guaranteed that the joint angle vector
0(k) calculated by the coordinate transformation in
Eq. (34) also changes smoothly. Whitney proposed the
coordinate transformation method that uses the
Moore-Penrose inverse of the Jacobian in order to
control a redundant arm [25]. Kawato proposed an
approximate learning method for the Moore-Penrose




inverse of the Jacobian for the coordinate trans-
formation [12]. The result of the proposed learning
rule approximates those coordinate transformation
methods.

3.2. On-line learning

In this paper, on-line learning refers to a learning
that is conducted when a human intends to control the
hand position and controls the hand by using Eq. (16);
A4, is calculated by the following equation:

Af; = P(6, Ax') 37
On-line learning is conducted according to the follow-
ing equations:

@'(6, Az) = A6;=®(6, Az)) (38)
Az = f(0+ A8,) — f(8)
~ J(6)A8, (39)

When the target system is a one-to-one system
and the inverse model starts learning from its rather
precise initial status, goal directed learning is possible
by on-line direct inverse modeling [26, 27]. The term
goal directed learning refers to learning that can im-
prove the precision of the learning element regarding
the desired output of the system. The forward and in-
verse modeling proposed by Jordan [1] and the feed-
back error learning scheme proposed by Kawato [7]
can conduct goal-directed learning. Off-line direct
inverse modeling cannot conduct goal directed learn-
ing.

In the case of the many-to-one target system, goal
directed learning is sometimes possible by on-line
direct inverse modeling if the rather precise initial
status of the inverse model has already been acquired.
However, it is difficult for DIM to acquire the rather
precise initial status of the inverse model.

Furthermore, in on-line learning, Eq. (27) is es-
tablished but Eq. (15) is not established. If the input
of the inverse model Ax 4 becomes 0, (8, Ax ) does
not always become 0 and the joint angles still move.
These characteristics are not good for arm control.

3.3. Characteristics of on-line and off-line
learning

The learning result of off-line learning does not
depend on the initial status of the learning element but
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it does depend on what teaching signals for the learn-
ing element are given.

Since the reaching signal of on-line learning is
determined by the output of the learning element, the
learning result of on-line learning depends on the ini-
tial status of the learning element. The learning some-
times fails because of the bad initial status of the
learning element. It should be noted that the forward
and inverse modeling and the feedback error learning
scheme have the same characteristics. By using only
on-line learning, if the initial state of the learning
element is bad, a sufficiently precise inverse model
cannot be obtained. Even if the initial state of the
learning element is good, ®(@, 0) does not always
become 0.

It is difficult for the off-line learning to conduct
goal-directedlearning regarding the specified trajectory
on which a human wants to move.

Therefore, we consider that both off-line and on-
line learning are conducted in human sensory motor
learning. We call this way of learning hybrid learning.
If both off-line and on-line learning are conducted, the
final learning result does not depend on the initial
status but depends mainly on the teaching signals used
in off-line learning.

Before a human becomes able to reach and grasp
objects, he/she starts many reflex motions and repeats
a variety of motions in his/her infancy. In this period,
a large amount of off-line learning is conducted and
the inverse kinematics solver is formed. The adapta-
tion of the inverse kinematics solver after the acqui-
sition is conducted by both on-line and off-line
learning,.

4. Simulations

Numerical experiments were performed in order
to evaluate the performance of the proposed model.
The inverse kinematics model of the 3 DOF arm mov-
ing on the 2 DOF plane is considered. The relation-
ship between the joint angle vector (6;, 6,, 03)T and
the hand position vector (x, y)! is as follows:

z = zo+ Licos(fy) + Lacos(6 + 6)
+L3zcos(fy + 02 + 83)
y = wyo+ Lisin(f;) + Lasin(6; + 62)

+Lgsin(6; + 62 + 03) (40)




(X0, ¥o) X

Fig. 3. Configuration of arm.

This is a simplified model of the human arm moving
on a vertical/horizontal plane. Figure 3 shows the con-
figuration of the arm. The range for 6, which corre-
sponds to the shoulder joint, is (-30°, 120°), the range
for 8,, which corresponds to the elbow joint, is (0%,

120°), and the range for 85, which corresponds to the
wrist joint, is (-60°, 60°). L, is 0.30 m, L, is 0.25 m and
15i50.15 m.

Consider the problem of calculating the joint an-
gles (8, 8,, 8;)7 which brings the hand to the desired

position (x, y)T.

For simplicity, K is set to 1 in Eq. (16). An
inverse kinematics solver that calculates the right side
of Eq. (18) numerically is used for comparison. Nu-
merical methods (NM) refers to this solver.

Trajectories generated as follows are used for the
evaluation of the inverse kinematics solver.

First, an initial joint angle vector @(0) is gen-
erated by using a uniform random number generator.
The hand position x(0) that corresponds to the joint
angle vector is regarded as the initial desired hand
position x,;. Second, the desired total change of the
hand position Ax , is generated by using a normal ran-
dom number generator. The i-th component of Ax,, is
calculated by:

Azye; = 0.20(m) (41)

The final desired hand position x, is calculated as
Tge = XTas + AT,

(42)

A trajectory x (k) (0 < k < 27) is defined as
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(1= k/T)zgs + k/Txae (0= k<T)
(T < k < 9T)

(43)

Lde

If x,(k) is not reachable kinematically, a2 new Ax, is
generated again. Finally, a trial in which this trajec-
tory is tracked by the inverse kinematics solver is con-
ducted.

T is set to 5. The sampling period At is 0.2 s.
The standard deviation of the velocity of the desired
hand position is 0.2 m/s.

In order to evaluate the performance of the
solver, 10,000 tracking trials are conducted for the
estimation of root mean square (RMS) of e(k). A trial
in which any joint angle vector reaches its stroke-end
in computation is regarded as a failure.

Four layered neural networks are used for the
simulations. The 1st layer, i.e., the input layer, has 5
neurons. The 2nd and the 3rd layers have 15 neurons
each. The 4th layer, i.e., the output layer, has 3 neu-
rons. The 1st layer and the 4th layer consist of linear
neurons. The 2nd layer and the 3rd layer consist of
nonlinear neurons which input-output relationship is
defined by a sigmoid function y = tanh(x).

The backpropagation method is used for the
learning of the neural networks. The possibility is only
slight that the human nervous system utilizes the back-
propagation method. However, since any learning ele-
ment that satisfies Egs. (3) and (4) can be used for the
evaluation and the backpropagation method is popular
and not complex, this method is used in this simula-
tion. The more realistic learning elements such as
Kohonen’s topographic mapping will be used in the
future.

Let ®(i) be the output of the neural network at
i-th learning trial, W(i) be the weight vector of the
connection of the neural network, and @' (i) be the
teaching signal. The backpropagation method [4] used
for the learning is expressed as:

WiE+1) = W)+ AW (i)
AW () = _naasv(;) + aAW(i—1)
St) = |9'() - @)

(44)

where 7 is the learning rate and « is the inertial factor.
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Fig. 4. Performance of OFIM after off-line learning.

The initial values of W(i) are generated by using
uniform random number which range is (-0.5, 0.5).

4.1. Off-line learning

A numerical simulation of off-line learning is con-
ducted in order of the relationship between the char-
acteristics of the teaching signal and the precision of
the hand position control of OFIM.

A learning trial is conducted as follows: First, an
initial joint angle vector is generated by using uniform
random number. Second, the joint angle vector is
changed by the small step A@ generated by using nor-
mal random number generator. Finally, the change of
the hand position Ax is measured and the learning is
conducted according to Eq. (14).

The i-th component of Af is calculated by using
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a normal random number w as follows:

Af; = ow (45)
where o is the standard deviation of the change of the
joint angle vector.

In this simulation, the sampling period At is set to
0.2sand o = 0.1 corresponds 0.5 rad/s. 7 is 0.001 and
@ is 0.5. The 10,000,000 learning trials were carried
out before the evaluation.

These 10,000 trajectorieswere generated, in order
to estimate the percentage that the hand succeeds in
tracking the desired trajectory within the range of the
joint angle vector and the RMS error of the hand
position. It should be noted that, since the arm used
in the simulation is a redundant arm, some joint angles
reach their stroke end at certain times. These trials
are regarded as failure trials.

Figure 4 shows the relationship between the pre-
cision of the inverse kinematics solver and o. Figure
4(a) shows the percentage of the successful tracking.
Figure 4(b) shows the RMS error of the output. NM
in the figures indicates the simulation results of the
numerical method. If the parameter o is appropriate,
the precision of the proposed inverse kinematics solver
is nearly equal to that of the numerical method.

It is understood that the precision of the pro-
posed output feedback inverse model is almost the
same as that of the numerical method when the learn-
ing parameter o is appropriate. In the future, the real
value of o that is used in human learning will be
considered.

Figure 5 shows one example of the arm postures
generated for tracking a trajectory of the desired hand
position. The number near from the end point of the
arm indicates the value of k. The center of a small
circle in the figure indicates the desired hand position
at k-th update. The radius of the circle is 0.01 m. The
center of a large circle in the figure indicates the final
desired hand position x4,. The radius of the circle is
0.02 m. The arm postures generated by OFIM is al-
most similar to those generated by NM.

4.2. On-line learning

Tracking trials in which the hand position is
controlled to track the desired trajectory generated by
Eq. (43) and the inverse model is learned simultane-
ously are conducted in the simulation of on-line learn-
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Fig. 5. Path of hand (off-line learning).

ing. The update of the weights of the neural networks
is conducted at each update of Eq. (16) according to

Eq. (14). Ten times update of the weight is.conducted
in one trial.

By on-line learning from 100 initial states of the
neural networks, no sufficiently precise inverse model
can be obtained.

This inverse model learning is almost. impossible
by only on-line learning. After 100,000 times off-line
learning trials as described in section 4.1, the simu-
lation of on-line learning was conducted. In the off-
line learning, p is 0.5 rad. The learning rate 5 in the
Eq. (44) for on-line learning is 2.0 x 107! and the in-
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Fig. 6. Simulation result of on-line learning.

ertial factor e is 0.5. The learning rate for the on-line

learning is smaller than that for the off-line learning in
order to stabilize the learning.

Figure 6 shows the progress of on-line learning.
The RMS error of the hand position decreases as the
number of learning trials increases. The performance
of the inverse kinematics solver increases by on-line
learning. However, after 107 tracking trials, the RMS
error stops decreasing and starts increasing.

Figure 7 shows the hand position control by the
inverse kinematics solver learned by 107 learning trials.
Although the on-line learning started from rather good
initial state of the learning element, the precision of
the solver learned by the on-line learning is lower than
that of the solver learned by off-line learning shown in
section 4.1. The solver learned by on-line learning
becomes unstable easily and the RMS error of the
solver sometimes increases easily. As stated in section



05 x

Fig. 7. Path of hand (OFIM, on-line learning).

3.3, the possibility that a human forms the inverse
kinematics solver by using only on-line learning is low.

4.3. Hybrid learning

The simulation of the hybrid learning that consists
of both on-line and off-line is conducted.

The off-line learning is conducted when the arm
moves from the end point of one tracking trial to the
start point of the next tracking trial. When the change
of the joint angle vector reaches

|AB| = 0.25(rad) (46)
a trial of learning is conducted. 0.25 rad corresponds
to 1.25 rad/s when the samphng period is 0.2 s. The

learning rate 7 is 5.0 - 10 and the inertial factor « is
0.5.

Figure 8 shows the progress of hybrid learning.
It is understood that the RMS error decreases and the
precision of the solver becomes higher as the number
of trials increases. After 107 tracking trials, the RMS
error still keeps decreasing. The RMS error is 5.03 X
103 at 108 tracking trials. The mean number of learn-
ing in one tracking trial is 16.3. Figure 9 shows the
hand position control by the learned solver. As the
off-line learning in section 4.1, the path of the hand is
almost similar to that of the numerical method. It is
understood that the solver learned by the hybrid learn-

ing has sufficient precision of the hand position con-
trol.
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Fig. 8. Simulation result of hybrid learning.

4.4. Solution for static inverse kinematics prob-
lems

The simulation solving static inverse kinematics
problems by using the solver learned in section 4.3 is
conducted. A trial for solving a static inverse kine-
matics problem is conducted as follows. First, a joint
angle vector is generated by using uniform random
number. Then, an inverse kinematics problem, which
regards the hand position corresponding the joint angle
vector as a desired position, is solved. The RMS error
of the hand positions generated by the solver is mea-
sured for the evaluation of the solver. The 10,000
desired hand positions were generated for the evalu-
ation.

When a desired hand position is given, an initial
joint angle vector A@(0) is generated by using a uni-
form random generator. A desired hand trajectory is
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Fig. 9. Path of hand (OFIM, hybrid learning).

defined by Eq. (43) and the tracking procedure of the
trajectory is started as stated in section 2.5. If the
norm of the error between the hand position and the
desired position does not become smaller than the de-
sired position, a new initial joint angle vector is gen-
erated and the tracking procedure is repeated.

The upper limit of the generation of the initial
joint angle vector is 20 for one desired hand position.
If no solution which satisfies the desired precision is
obtained, the solver outputs the joint angle vector
which generates the smallest hand position error in all
tracking procedures as a solution of the inverse kine-
matics problem.

For comparison, the precision of the solver that
uses the inverse kinematics model learned by DIM is
estimated. In this chapter, DIM refers to the solver
learned by DIM. A 4-layered neural network is used
for DIM. The 1st layer of the networks has two neu-
rons. The 2nd and 3rd layers have 15 neurons each.
The 4th layer has three neurons. The learning by DIM
is conducted from 10 initial states of the neural net-
works and the best learning result is selected for the
evaluation. The RMS error of the OFIM is 6.39 X
103 m and the mean number of the initial value
changes is 0.692 when the desired precision is 0.01 m.
The RMS error is 5.48 x 103 m and the mean number
of the initial value changes is 4.29 when the desired
precision is 0.005 cm. The RMS error of DIM is 1.62
X 102, The precision of the output feedback inverse
model is higher than that of DIM in this simulation.
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5. Conclusions

In this paper, we proposed a new learning model
which avoids the ill-posedness of the of the inverse
kinematics problem and obtains an inverse kinematics
solver of a human arm and corroborated its learning
capability through numerical experiments.

DIM has another problem as a human learning
model. The large-scale connection change is necessary
before the inverse model is used for control after
learning. When controlling the hand position, the
input of the learning element is the desired change of
the joint angles.

When learning, the input of the inverse model is
the observed change of the joint angles. Though the
desired change and the observed change should coin-
cide, the difference of the characteristics of these two
signals is large. The solution of this problem will be
reported in the future.
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APPENDIX

Appendix 1. Off-line Learning

From Egs. (23) and (25),

Ab(Azx,u) = Jt(6)Az
+ (I —Jt6)J(8)(G(8) + u)
(47)

is obtained. Assuming that rank(J(6)) is n, rank(I -
JT(8)J(8)is m - m. Let u* be an m X 1 vector n,
components of which are appropriately selected and set
0. For a given u, u* that satisfies the following
equation exists:

(I — JH(8)J(6))(G(8)Az + u)

= (I - JH(8)J(8))u (48)

We can assume the following equations with generality:

* ! ! /
w* = (ul,uy, .. u,_,, 0,

L0)T (49)

u' = (ull’u/%u.{il""ualfn—n)T (50)
The correspondence between u’ and A#(Ax, u) isone-
to-one. Hereafter,J " (8) is designated as J*. Because
Eq. (28) contains a scaling term, the volume element
dv can be identified with du’. Therefore,

&0, Az) ~ E(A8*(Az,u))

Jy p(AF" (Az,u))AG"(Az, u)du’
Sy p(A8" (eam, u))du

fy p(AG )T — Tt J)u"du

— +
= S Ae T AG (A, w))du

(1)

The region of the integration U in the forementioned
equation is the whole space of (m - n) X 1 vector '’
expressed as

foroer= [ [

Consider the distribution of A8 to be spherical
symmetry. In this case, the probability density function
p(A8) is the function of the square of the norm of A8
as

uw')du...

n—n

(52)
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p(AB) = g(A6T AB) (53)
Let B be a m X m matrix defined as
B=1-J%J (54)
Since
JtTB =o (59)

is established,
p(A8%) = g(AzTJ T I+ Az + w*T BT Bu*) (56)

is obtained. Because p(A8*) is an even function of
each element of u’', and Bu* is an odd function of each
element of u’, the integral of the product of p(A8*)
and Bu* is 0. Consequently,

30, Az)~ E(A0*) =Tt Az (57)
is obtained. The learning element calculates the mini-
mum norm solution of Eq. (13).

Consider that p(Af) can be expressed as Eq. (32).
Because P is a positive symmetric matrix, there exists
an appropriate R that satisfies

P = RRT (58)
By the transformation of the variables as:
A = R'A6
J = JR
A0 JTAz + (I — J'*J')u
Jro= yraaT)T (59)

the same calculation as in the preceding equations can
be used. Consequently,

@6, Ax)

X

E(A8%)
— RE(AGI*)

— RJ'T(.]'J/T)—le



= PJT(JPJIT) Az (60)

is obtained.

Appendix 2. Coordinate Transformation System Pay-
ing Attention to Velocity and Acceleration

Coordinate transformation systems can be ob-
tained by paying attention to the relationship between
the joint angles velocity and the hand position velocity.
Let ®(8, x) be the output of neural networks, the out-
put of which is the velocity command of the joint an-
gles and @' (0, x) be the teaching signal of ®(8, x). We
propose the learning method of ®(9, x) as follows:

®(0,2)=0 (61)
As the coordinate transformation system based on the
change of the joint angle vector described in section
3.1,
8 = &6,z)

E(é*) =J*(0)x (62)

%

is obtained. ®(0, x) is the inverse model of the system
described in Eq. (19). By inputting the desired hand
velocity, including the position error feedback

Ty =xa+ K(za — ) (63)
to (0, x), the velocity command of the joint angles

that makes the hand tracking the desired hand position
can be calculated.

As the coordinate transformation system calcu-
lating the velocity command of the joint angles, the
coordinate transformation system ®(8, 6, ¥) calculating
the acceleration command of the joint angles can be
obtained by the teaching signal defined as

&'(0,0,2)=6 (64)

6* that satisfies Eq. (20) can be expressed as

6" = J"(8)(& - [ag_g")e]m + (I — J*(8)J(8)u
(65)
According to the learning shown in Eq. (64),
$(0,6,%)~ EB) = J(6)(&— [%9]0)
(66)

is obtained. ®(8, 0, 32) is the inverse model of the sys-
tem described in Eq. (20) that can transform the accel-
eration of the hand to the acceleration of the joint
angles.

By inputting the desired hand acceleration in-
cluding the position and velocity error feedback

:iiizid—i-KD((id—-ii)-}‘K(md_m) (67)

to ®(0, é, i), the acceleration command of the joint
angles that makes the hand tracking the desired hand
position can be calculated. K, is an appropriate
velocity feedback gain.
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