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Why is binocular visual space distorted
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Abstract

We propose the independent scalar learning elements summation (ISLES) model, a neural
network model for the developmental learning of binocular visual space. When applied to the
phenomena of Hering’s horopter and the locus of perceived egocentric equidistance, this model
provides a better qualitative explanation than the Luneburg theory. This model provides physical
explanations for the di2erences among individual subject data, by accounting for the spatial
distribution of the visual experiences for learning the perception. When the perceptions are
classi4ed via psychophysical scaling, their class logically determines the learning signal in this
model. As a result, the same ISLES model can predict each phenomenon when a subject learns
the physical loci under various conditions. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

From a psychophysical standpoint, human binocular visual space is distorted and
does not completely coincide with physical space. Even in darkness, humans can per-
ceive the locations of points of light and their separation distance with binocular vision.
In such a situation, the subjective straight line to the objective point becomes the refer-
ence. However, the subjective straight line is observed to have a certain physical curve
which is generally not straight in the physical sense. This phenomenon is well known
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Fig. 1. Hering’s horopter and the human oculomoter system. (a) Top view of typical horopter. (b) De4nition
of parameters.

as Hering’s front parallel horopter [3]. A horopter curve is a subjective frontal plane.
Fig. 1(a) shows a top-view of some typical front parallel horopter curves. In the 4gure,
L and R are the left and right eyeball positions of the observer, respectively. The shape
of the horopter curve depends on the distance from the observer. At a certain distance
(Xa in this 4gure), it is practically straight. At closer distances, the horopter curves are
concave to the observer, while at greater distances they are convex [9]. Discussions
of binocular disparity are not necessary for this phenomenon. It can also be observed
by alternately gazing at each point of light in darkness. In this case, the cues for the
perception of the vertical are only the vergence angle �, and the bipolar latitude �.
With these cues, binocular visual space can be described as a perceptual space endowed
with a rich geometrical structure, which according to Luneburg [7] is a non-Euclidean
Riemannian geometry of constant curvature. This hypothesis, together with certain psy-
chophysical assumptions, provides a qualitative explanation of classical empirical phe-
nomena. Luneburg’s metric of binocular visual space provides a good description for
the phenomena in the horizontal plane, but it does not give the reason as to why
perceptual space is distorted. A new hypothesis is proposed here, wherein perceptual
space is distorted as a result of some physiological constraint that renders the learning
for the perception incomplete, since the phenomenon is observed independent of the
subject’s mathematical knowledge of the geometry. In order to con4rm this hypothe-
sis, the independent scalar learning elements summation (ISLES) model is proposed,
which is a neural network model for the developmental learning of perceptual space.

2. Background—geometry on binocular visual space

When a human subject gazes at a point of light, the location and orientation of
the eyeballs are identi4ed by the sensory signals of the vergence angle � and the
bipolar latitude � (Fig. 1(b)). In the process of human visual space perception, a
transformation is required to map � and � to physical world orthogonal coordinates x
and y that describe planes and lines. Under Euclidean geometry, this transformation is
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as follows:

x =
W
sin �

(cos �+ cos 2�) ≡ X (�; �); y =
W
sin �

sin 2� ≡ Y (�; �): (1)

On the other hand, in Luneburg’s metric, which is based on Riemannian geometry �
and 
, the horopter is de4ned as a geodesic line. The line meets the 
-axis at a right
angle, and is asymptotical to one direction at in4nity. The geodesic line is described
as Eq. (2). K is the constant curvature of the space. � is the constant for scaling
the distance. These are de4ned as the individual constants of subjects in Luneburg’s
metric. These constants are used to explain the di2erence among the individual data of
the horopters. Here, C is the invariant to de4ne a curve of horopter. When the curve
meets the 
-axis at 
0, C is de4ned as follows:

K
4
(
2 + �2)− 1 = C
;

{

= 2e−��cos�
�= 2e−��sin� ⇒ C =

K
4

0 − 1


0
: (2)

From the standpoint of psychological scaling, some invariant is necessary in order to
de4ne a subjective line. This is the necessary condition for the nominal scale, which is
the 4rst class of the psychological scaling. The human perception process also needs
to have some function from the sensory cues to such an invariant, since the human
perception process constantly performs psychophysical measurement.

3. Independent scalar learning elements summations model

A plane and a straight line are abstract concepts acquired developmentally. There-
fore, the function for the invariant should be obtained from some learning mechanism
involving a visual space perception process. If the human learning mechanism could
completely learn the function from Eq. (1), then human sensory space would coincide
with physical space. However, the subjective straight line of a human operator di2ers
from a physical one, so the human learning mechanism is apparently incomplete in
learning such a function. So what kind of mechanism generates the characteristics for
human visual space? The incompleteness should mostly comprise physiological factors
of neural networks of human brains, since everyone has the same tendency. We propose
here an assumption of the physiological learning rule that the physiological learning
mechanism cannot propagate error signals backward to any layer except the 4nal (out-
put) layer. It is such a basic and natural constraint from a physiological viewpoint that
such learning mechanisms are actually found in a human brain [8]. In this case, the
training signal for learning is not a vector but a scalar signal, because only one scalar
signal is made from a scalar evaluating function. We call this learning rule the scalar
learning rule. We provide a neural network model for the developmental learning of
perceptual space, which we call the ISLES model. (Fig. 2)
The ISLES model has similar constraints for learning as a biological neural network

from a scalar learning rule. This model does not apply the back-propagation method,
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Fig. 2. ISLES model. (a) ISLES model. (b) Scalar learning element.

but utilizes the Hebbian learning rule as a three-layer Perceptron. Further, the cells
of the hidden layer are simple cells with only one input signal, so the ability of
this model to learn arbitrary functions is mathematically incomplete. When the model
has n independent input signals, it has n independent groups of simple cells. Each
group is called a scalar learning element. This model has n scalar learning elements
f̂ 1(s1)f̂ n(sn) and only one summation unit for an output f̂:

f̂(s1; s2; : : : ; si; : : : ; sn) =
n∑
i=1

f̂ i(si) + C; (3)

where each f̂ i(x) is a nonlinear continuous scalar function acquired through training.
Each scalar function is made to learn its output with the error signal: Lf̂ i = Lf̂ ≡
f − f̂. Here, f(s1; s2; : : : ; si; : : : ; sn) is a training function to be learned. These scalar
learning functions can be implemented by a neural network model with the constraint
mentioned above [5,6]. If the neural network model’s learning method is like the
Perceptron or a method of steepest decent, then after suMcient training, each function
f̂ i(x) converges to each expectation as follows:

lim
t→∞E[Lf̂

2
] = Cmin ⇒ lim

t→∞E[f̂ − f] = C′
min ;

⇒ lim
t→∞E


 n∑
j=1

f̂ j − f + C


= C′

min

⇒ lim
t→∞

n∑
j=1

E[f̂ j] = E[f] + C
′: (4)

Here, S is de4ned as the whole of the learning domain, and Si is de4ned as a sub-
domain where si = x. The output of f̂i(x) is determined with the subdomain Si, as
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follows:

lim
t→∞

n∑
j=1

ESi [f̂ j] = ESi [f] + C
′ ⇒ lim

t→∞ f̂i(x) +
n∑
j=1

Cj = ESi [f] + C
′;

⇒ lim
t→∞ f̂i(x) = ESi [f] + C

′′

⇔ ESi [f(s)] =

∫
Si
�(s)f(s) ds∫
Si
�(s) ds

: (5)

Every other function except f̂i(x) becomes constant because each function is dependent
on a single input signal that is independent of every other input. The expected value
ESi [f(s)] can be calculated directly by integrating over the region Si. Therefore, simu-
lations calculated by this model do not need successive training when the distribution
function �(s) of learning points is known a priori. In the ISLES model, input signals
are “isled” with each other until they are summed up in the output layer. Therefore,
while this model cannot completely learn all the mathematical functions, it can make
some di2erences from ideal ones. When the di2erences are similar to those reported
in psychophysical experiments, the neural network model can be considered a good
approximation to the physiological process of spatial perception.

4. Simulation for the horopter curves calculated by ISLES model

ISLES model is incomplete in learning arbitrary functions. However, this incom-
pleteness and the class of psychological scaling for learning made the curves of the
frontal parallel horopter. In order to learn a frontal parallel plane, the training func-
tion is not necessarily the X (�; �) of Eq. (1), but it is necessarily invariant on the
frontal plane. In addition, the function must be monotonic to the depth x in order to
conserve the order. This is the necessary condition for the ordinal scale, which is the
second class of the psychological scaling, and is necessary and suMcient to measure
parallelity. Here, the value of the invariant is given as f0, the output at the point P0
crossing the median plane on the same frontal parallel plane. As the de4nition of the
invariant, f0 and P0 correspond to C and 
0 of Eq. (2) in Luneburg’s metric. In this
case, the error signal for learning is de4ned as Lf̂=f0 − f̂. The domain for learning
in the ISLES model is de4ned as the domain where the cues � and � are e2ective
spatial cues in human binocular perception. In this study, the domain was de4ned as
−�=4¡�¡�=4, 0:003¡�¡ 0:3. This domain is equivalent to the domain of ordinal
human binocular visual experience. Luneburg’s individual constants K , � are explained
as the distribution of the learning points in ISLES model. In this result, the distribu-
tion was homogeneous along � and �. After training, the experiments for measurement
of horopter curves were simulated by the ISLES model. The results are shown in
Fig. 3(a).
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Fig. 3. Results of simulation by ISLES model. (a) Hering’s horopter. (b) Egocentric equidistance.

5. Discussion and additional simulation: egocentric equidistance

The shapes of the horopter curves are quite similar to those of humans that the ISLES
model provides a qualitative explanation for the phenomena of Hering’s horopter as
well as Luneburg’s model. Further, this model provides a physical explanation for indi-
vidual data as the distribution of the learning points. In this result, the � of Luneburg’s
individual constants was slightly greater than the empirical human average, which im-
plies that this distribution of learning points in the near domain is slightly greater than
average. This distribution on the ISLES model is concerned with the visual experiences
of the human subjects in physical space, while Luneburg’s individual constants K , �
can be de4ned only in Riemannian geometry. From this result, it seems that ISLES
model can provide a better explanation in the physical sense than the Luneburg theory.
Although the Luneburg theory provides a qualitative explanation of classical empirical
phenomena, the theory has been less successful in quantitatively predicting individ-
ual data [4], a fact that has sometimes been taken as evidence against the presumed
geometrical structure. Some of these shortcomings, however, may also be attributed
to psychophysical assumptions that do not depend on the geometry of visual space.
The locus of perceived egocentric equidistance, for example, has been found to devi-
ate systematically from the Vieth–Muller circle postulated by Luneburg [2]. The locus
is always observed at the outside of the Vieth–Muller circle. However, the locus of
perceived egocentric equidistance is easily de4ned under the ISLES model. An in-
terval scale is necessary for the perception of distances, which is the third class of
psychological scaling. In order to learn egocentric distances, the training function f
has to conserve the interval. Here, the value of the invariant is given as the interval
Lf0, the di2erence of the outputs at the points whose interval on the physical egocen-
tric distance is invariant LD0. In this case, the error signal for learning is de4ned as
Lf̂=Lf0−Lf′

0, the di2erence between the Lf0 at a set of points and Lf′
0 at another

set of points. The training function f must conserve the Lf0 at any LD0. Therefore,
this function is necessarily equivalent to aD+b, where a and b are constants and D is√
x2 + y2, the Euclidean norm of the learning point as the egocentric distance. After
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learning the front parallel horopter as well, the loci of perceived egocentric equidis-
tance were simulated by the ISLES model. The results are shown in Fig. 3(b). The
loci by the ISLES model were always observed to be outside the Vieth–Muller circles.
This result means that the same ISLES model can generate both Hering’s frontal par-
allel horopter and the locus of egocentric equidistance when it learns the physical loci
under each psychological scaling. This con4rms that the ISLES model can provide a
better qualitative explanation than the Luneburg theory. Lately, a computational model
of depth perception based on headcentric disparity was proposed by Erkens and Ee [1].
This model is based on three types of retinal disparity, and integrates the contradictions
among those disparities into the error of the oculomotor signals, in order to compensate
each other’s disparity. The approach of that model may ultimately be closely related
to our study of the ISLES model, although the main depth cues for the two models
di2er.

6. Conclusions

In this paper, we provided the ISLES model, a neural network model for the de-
velopmental learning of perceptual space. This model was applied to the phenomena
of Hering’s front parallel horopter and the locus of perceived egocentric equidistance,
and provided a better qualitative explanation than the Luneburg theory, especially for
the perception of egocentric equidistance. In addition, this model provides the physical
explanation for the di2erences among individual data as the spatial distribution of the
visual experiences for learning the perception. Furthermore, the perceptions are clas-
si4ed by psychological scaling, and the class of scale determines the learning signal
logically. As a result, the same ISLES model can predict each phenomenon when the
model learns the physical loci under each psychological scaling. This result suggests
that the class of psychological scaling in perception is signi4cant not only for psy-
chophysical measurement but also for the human learning process, since the perception
system of a human brain is in itself a psychophysical measurement system.
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