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Abstract

A tactile display using elastic waves in a ’tapered
plate’ (a plate whose width decreases gradually) is
proposed. When an elastic wave is inputted to the
tapered plate, there exists a boundary beyond which
an amplitude of the wave is attenuated. The bound-
ary is called ’turning point’, and its position on the
plate is controlled by the frequency of the wave. Tt
is reported that touching a vibrating object with ul-
trasonic frequency generates a sense of a slippery sur-
face. Therefore, by elastic wave in the tapered plate, a
boundary between slippery and frictional area can be
mcved by the position of the turning point. Further-
more, because the amplitude of the wave is peaky at
the turning point, surface textures are also controlled.
In an experimental device employing a rubber plate,
these basic phenomena are confirmed.

Key words: Tactile display, Elastic waves, Tapered
plate

1 Introduction

Haptic sensation is divided into two parts. One
is proprioception, which is sensation of weight, resis-
tance, or the approximate shape of an object. The
other is tactile, cutaneous sensation, which is a sense
of roughness, ruggedness, or the otherwise variegated
texture of an object’s surface. The purpose of this
study is to develop a tactile display that provides a
tactile sensation in active touch.

We proposed a tactile display using elastic waves.[1]
In our display, a spatial amplitude-modulated elastic
wave 1s touched in our display. Finger skin detects
the envelope of the A.M. wave whose wavelength is
freely controlled. Theoretically, an arbitrary surface
shape 1s generated as the envelope of the spatial A.M.
wave. However, in the previously described display,
only two sinusoidal waves are superposed, thus the en-
velope shape is confined to a simple sinusoidal shape.

In this paper, we propose a new method to create a

more complicated texture on an elastic plate surface.
We use elastic waves in a 'tapered plate’- a plate whose
width decreases gradually and continuously. When
an elastic wave is inputted into the tapered plate, an
amplitude of the wave increases gradually fromm the
place where the wave is inputted to a certain place
called 'turning point’. After passing through the turn-
ing point, the amplitude of the wave is attenuated
exponentially. The position of the turning point on
the plate is controlled by the input frequency of the
wave. It is reported that touching a vibrating object
with ultrasonic frequency creates a sensation of a slip-
pery surface by air lubrication called squeeze effect.[2]
Therefore, an elastic wave in the tapered plate pro-
vides an slippery area from the place where the wave
is inputted to the turning point , and an frictional area
beyond the turning point. The boundary between the
slippery and frictional areas can be moved by the wave
frequency. By this method, the frictional state of the
plate surface is controlled.

Furthermore, the amplitude distribution of the
wave in the tapered plate is peaky at the turning
point. Thus in a linear elastic body, waves with several
frequencies creates several peaks whose positions are
changed by the frequencies. Because this shape gen-
erates a spatial distribution of squeeze force, tactile
sensation of surface textures can be controled.

An overview of this paper is as follows. In Section
2, we present an argument regarding elastic waves in
a tapered plate. This phenomenon is usually not the
focus of detailed argument in elastic waves theory[3]
[4], but is fundamental to our display. Therefore, we
analyze amplitude distribution of the elastic waves in
the tapered plate at length. Based on elastic waves in
an ordinary straight plate in 2.1, the basic equation
and period equation of elastic waves in the tapered
plate are derived from 2.2 to 2.5. We find analogy be-
tween the tapered plate equation and the Schrédinger
equation in quantum mechanics, and introduce a con-
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cept of the potential energy of the tapered plate for
elastic waves in 2.6. Using this concept of potential
energy, detailed amplitude distribution is derived an-
alytically in 2.7. In Section 3, we discuss the tactile
display using elastic waves in a tapered plate. From
the analysis in Section 2, the position of the turning
point is represented by the wave frequency. By chang-
ing the frequency, the friction and the textures of the
plate surface is controlled. In Section 4, an experi-
mental device is constructed using a rubber plate as
the clastic plate, and a oice coil as a vibrator. These
basic phenomena are confirmed with the experimental
display.

2 FElastic Waves in a Tapered Plate
2.1 Infinite Straight Plate

SH waves in an infinite elastic plate whose sides are
fixed are considered here. We set the = axis along
wave propagation direction, the z axis for plate width
direction, and the y axis perpendicular to the other
axes. A plate width is 2W,.

SH waves have an amplitude for the y direction.
The following notation is used:

v Displacement for y direction
¢ @ Rigidity of the elastic plate
p . Density of the plate

First, a displacement of the elastic plate for the y
direction; v satisfies the wave equation;

v 5? 0? ()
Porr = Mg T E2)
The solution for this equation is assumed as

v = jugcoskz e JwiTke) (2)

Inserting (2) into (1), we obtain

pw® —p(k* + k7)) = 0. (3)

From a condition of fixed sides, a wavenumber of
the z axis; k; holds for

coskiWs = 0
— kW, = mg, m=1,3,5.. (4)

Thus, inserting (4) into (3).

2

, 2 2

w mn 5

it — 2 (F
() = (&%) + )

is obtained where V; is S wave velocity of the elastic
plate defined as

Ve, = = (6)

(5) is called a period equation. When a vibration
with temporal frequency w perpendicular to the plate
is given, a traveling wave generated on the infinite elas-
tic plate has a spatial frequency k for the x direction
which satisfies (5). A dispersion curve(the realation
between k and w) of a rubber plate used in a larer
experiment is drawn in Fig. 2(a), where a plate has
a width Wy = 50[mm]. The right hand of the hori-
zontal axis represents a real part of the wavenumber
k, and the left hand of the horizontal axis represents
an imaginary part of k. (In Fig.2(a), the first mode is
drawn; m=1)

A node of the frequency curve and an axis of ordi-
nates is determined from the wave width Wy as

B Vs 7
Wy = 2W0' ()

This is called cut-off frequency under which the
wavenumber becomes imaginary and the wave is at-
tenuated.

2.2 Tapered Plate

Now, a plate with a variable width according to
z = W{x) is considered.(Fig.1) We call a plate whose
width decreases monotonously and gradually a ’ta-
pered plate’. Elastic waves in a tapered plate are con-
sidered from this section.

Figure 1: Tapered plate

In the microvolume of a tapered plate, an amplitude
v should satisfy a wave equation as in a straight plate.
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Boundary conditions in the tapered plate problem are
different from those in the straight plate problem.
Wave equation:

1 8% 0? b?
vioe ~ \a2 T a)” ®)
Boundary conditions:
v=20 at z=xW(x). (9)

To solve a tapered plate problem, the transforma-
tion of variables is conducted as follows.
2.3 Basis of a tapered plate probrem
Now, curvilinear coordinates («, 3) defined as fol-
lows are introduced:

a = z (10)
z

g = Wz) (11)

In (@, 3) cordinate, boundary conditions become
v(B) =0

which is treated as a straight plate problem with a
constant plate width.

at f=+1, (12)

Lemma If Wr(z) << 1, that is, if a change rate of
the plate width is small enough, (a, 8) is rectangular
coordinates.-

0o da o8 0B
proof) Va VB = ((—9;:5) (ayg)
wr 1
= (LO)'(—ZWaw)
Wi
= _ZW
= 0 QED

At this time, a stroke and the Laplacian are
ds> = dz’ +dz2?

1-do? + W?(a)d3?

glda2 =+ gZdﬂzv

8, .8, 8, 1 8
s = (w05 miww )
o? 1 9
52 T W) oF

Thus, using (a, 8), the wave equation and boundary
conditions of the tapered plate problem are translated
into a straight plate problem as follows:

1 8%v _ 2 1 B2
vZoE © \ae® T wrmarE) 19
v=0 at f=+1 (14)

2.4 Separable solution
Considering fixed boundary conditions in (14), a
separable solution,

v(a,8) = f(a) cos %,8 g Iwet (15)

is assumed here. Because (13) is not a pure wave
equation, a solution of a sinusoidal progressing wave
along the z direction cannot be assumed. Therefore.
as a general sotution, f(z) is assumed to satisfy

d*f(a)

o = ~k(a)f(a). (16)

This solution represents a semi-sinusoidal progress-
ing wave whose wavenumber k, is not constant but a
function of a position z.

2.5 Period equation of tapered plate

Substituting (15) into (13), we obtain a period
equation of the tapered plate as follows by using (186).

(%)2 - k:ﬁ(a)+<#m)>2- (17)

A plate width Wy in the period equation of the
straight plate (5) is changed into a tapered plate width
W (). A cut-off frequency (7) is also changed into

Vs
2W ()’

we(a) (18)

which depends on the position a.
In Fig.2, a change of the wavenumber k along the

z axis is shown. With decrease of the plate width

from Wy to Wi, a cut-off frequency increases from
V. V.
= ;VSO to wy = ;/I—;l according to (18). Thus, the
dispersion curve is lifted up as shown in Fig.2 (b).
At last the cut-off frequency comes to be equal to
the input frequency(Fig.(c)). After the wave passes

Vs

Wo

the place where the width is , the wavenumber

becomes imaginary(Fig.(d)), and the wave is attenu-
ated.
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Figure 2: Change of a local wavenumber;k in the ta-
pered plate

From the above discussion, a progressing wave in
a tapered plate has a wavenumber k,(a) and an am-
piitude f(a) which satisfies (16). Thus, the amplitude
distribution of the wave in the tapered plate is decided
by (16). We call the equation (16) the ’tapered plate
equation’.
2.6 Relation between tapered plate equa-

tion and Schrodinger equation

Schrédinger equation for a stationary state in one

dimension is represented as

= —k(2)é(z), (19)

. 2m
@) = FE-VE@), @)
where ¢ is a probability amplitude, £ is an eneray
of the system, and V(z) is a potential energy of the
system. Schrodinger equation (19) and tapered plate
equation (16) have the same shape. We change (17)
into

and compare (21) with (20). Now, if we correspond

the energy of a system E in the Schrodinger equation
2

. . w2 .
to an input energy in the tapered plate (7> , and if
S

2
7r

we correspond a potential energy V(z) to <2W(a)) ,

we can analyze the tapered plate equation by analogy

to the Schrodinger equation. This analogy brings an

important concept of potential energy of the tapercd

plate for elastic waves, where it is in inverse proportion

2
to the plate width represented as (%) That

is, the wider the plate width, the easier it is to pass
through the plate for elastic waves.

The advantage of establishing the analogy between
the tapered plate equation and the Schrédinger equa-
tion is that we can understand the property of the
elastic waves easily by showing the graph of the po-
tential energy of the plate and an input energy of the
wave.

(a)Schrodinger equation (b)tapered plate equation

Input energy: E © (%)

(e7)

Potential energy: V(z)

¢
bx e

k>0 | <0 >0 | k<0

Turning point

Turning point

(a) (h)

Figure 3: Analogy between (a) Schrdodinger equation
and (b) tapered plate equation
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The property of the wave changes drastically at the
place where the input energy is equal to the potential
energy. This point is called a turning point(Fig.3)
where k. (2) = 0 for an input frequency w. From
(21), a signature of the square of a local wavenumnber
changes at the turning point. Where the input energy
is lower than the potential, the wavenumber becomes
imaginary, which results in an exponential damping of
the wave. On the contrary, where the input energy is
higher than the potential, the wavenumber becomes
real, which results in the sinusoidal vibration.

Here, we represent a position of the turning point
for an input frequency w. When a plate width is as-
sumed as

Wi(z) = Wye , (22)

A local wavenumber is

2 2
o = (2) () oo

Therefore, the turning point defined as k,(x¢) = 0
is obtained as

_ 110_ Vi
o= 1% oW

(24)

An amplitude distribution in the tapered plate is
shown in the next section.
2.7 Amplitude distribution in a tapered

plate

Now, assuming that the change rate of W (z), there-
fore the change rate of the potential is small enough,
the wavenumber is expanded around the turning point
(24) as a linear function of z as follows:

k2(z) = kZ(zo) + dkid(;()) (z — xp)
= k (l - .’Ko), (25)
where
- ) 2
k= 2d (i) (26)

After all, the tapered plate equation where the
square of the local wavenumber is approximated as
a linear function is

d*f(x)
dz?

Now, when the transformation of variables,

+k2(x—:v0)f(z) = 0. (27)

T —Typ = X (28)
f@) = f(X +20) = g(X) (29)
is conducted, we obtain
d29(X) 2y
W + k Ag(}() = 0. (30)

The solution of this equation is represented analyt-
ically using Bessel functions. (Appendix A)

A solution for X > 0 is
2 3
kX2
(3 )) |

(31)

and a solution for the region X < 0 is represented
as

(S

9(X) = VFC—(AJ% @k\a) +BJ

- 2 2
o) = VX (jmxi). @
By determining coefficients A, B, C in order that
X
g9(X) and dil('() become continuous at X = 0, we
obtain ‘

ap—

g(X) = Ajgﬁ (.]

<§kX > +J 4 <§kx )) (X >0)

(33)
2
o) = AVIXIK, (SHX1E) (X <0),

where A is determined by an input amplitude.

After all, by restoring variables with (28),(29), the
amplitude distribution in the tapered plate is repre-
sented as follows, with a different expression before
and after the turning point.

fz) =
A\/lg\/a:——:ng <J§ (%k(z—xo)%> +,]_% (;k(x _ ;Bo)%>>
(z > o) (35"

flz) =
2 :
A/ |x - IO|I(% <§k|x - I()|%)

(z < o). (36,
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The amplitude distribution in the tapered plate is
shown in Fig. 4.

Turning point

Amplitude

Figure 4: Amplitude distribution in the tapered Alu-
minum plate

—f =40[kHz|, Wy =2[cm], the wave is inputted at
=0

3 Texture control using elastic waves
in a tapered plate
The wave in the tapered plate shown in Fig.4 has
a remarkable shape for controlling tactile sensation as
follows.

1. From the place where the wave is inputted to the
turning point, there exists a semi-sinusoidal wave.
Beyond the turning point, the wave is attenuated
and there is no vibration.

2. An amplitude increases gradually from the place
where the wave is inputted, and becomes maxi-
mum at the turning point. The attenuation be-
yond the turning point is exponential.

3. In a linear elastic plate, several amplitude peaks
can be generated by inputting waves with several
frequencies.

4. A position of the turning point can be controled
by an input temporal frequency. (Fig.5)

We discuss a method for controlling friction using
the property 1,4 in Section 3.1, and a method for con-
trolling texture using the property 2,3,4 in Section 3.2.
3.1 Control of friction

[2] showed that touching an object with ultrasonic
vibration creates a tactile sensation of a slippery sur-
face by an air lublication called squeeze effect. When
an elastic wave is generated in a tapered plate, a region
with vibration is bounded by an region without vibra-
tion. [(property 1) A boundary between two regions is
the turning point, and its position can be controlled

Amplitude

=]
=
oo
=

(b)

X

\/‘ \/ o]

Figure 5: Control of the turning point by input fre-
quency in an Aluminum tapered plate
(a) f=40[kHz| (b) f=20[kHz], Wo=2[cm]

- o
=N
oo

by temporal frequency of the wave.(property 4) Thus
the boundary of the slippery and the non-slippery re-
gion can be moved freely. Therefore a surface friction
state of the plate is easily controlled.

Finger

(SN

AAMAAAAAA AN /\//

WARARAAR \/ ‘

Slippery area | frictional area

Turning point
(movable by frequency)

Figure 6: Control of friction

3.2 Control of Texture

Let us consider amplitude distributions of several
types of elastic waves in a plate.

A progressing wave used for ultrasonic motor[6] has
a constant amplitude over the plate. Thus, the amn-
plitude distribution is flat. Even by a standing wavc,
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high spatial resolution cannot be obtained for texture
control. In our method proposed in [1], an A.M. wave
is used. The wavelength of the envelope of the A.M.
wave is freely controrable, but it is also difficult to
localize a vibration in the straight plate.

However in a tapered plate, the amplitude of the vi-
bration is attenuated exponentially beside the turning
point.(propery 2) Around the turning point, a surface
vibrational state changes drastically. Furthermore,
because amplitude distributions can be superposed in
inputting waves with several frequencies in a linear
elastic plate (property 3), the envelope can have sev-
eral peaks. (Fig.7)

Squeeze force which acts on a finger in touching an
object with ultrasonic frequency depends on an ampli-
tude of the vibration. [5] Thus, by elastic waves in the
tapered plate a squeeze force distribution is created
on the finger surface. We use the squeeze force distri-
bution for controlling a tactile sensation of textures.

. rAmp

V/\/\/\/\f\/\/\ x
co o T

Figure 7: A wave by superposition of waves with
f =5[kHz] and f =40[kHz|

4 Experiment
4.1 System

The experimental system is shown in Fig.8.

An elastic plate made of a rubber is used to ex-
mamine waves in the tapered plate with a large am-
plitude. Its thickness of the plate is 2[mm], and the
width is 100[mm]. A tapered iron plate is fixed as
a frame so that the tapered rubber plate with fixed
houndary conditions is created. For vibration, voice
coil called Exciter is used.

For mieasurement of vibrations, a laser displace-
ment meter (Keyence LC-2440) is used.

4.2 Result

The amplitude distribution in the tapered plate is
shown in Fig.9. A maximum value of the amplitude at
each place on the tapered plate is drawn. It is shown
that the turning point moves by change of an input
frequency.

Figure 8: Experimental system

Amp. [mm]
3 L . Turning point
, . .
. . (@)
[N} L ] L]
e *
*
" *
ttee,
oo e ey om|
v * * Turning point
ity 'Y * ¢
1 ¢ .
*
. . (b)
LY . *
. .
" - *
¢ L]
T e ey em]

Figure 9: Experimental result: Maximum value of the
amplitude at each point in the rubber tapered plate
—Wp =100[mm], (a)f =30[Hz|, (b)f =40[Hz]
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4.3 Future work

In a future work, we intend to investigate an ta-
percd plate of aluminum, and vibrate it with ultra-
sonic frequency in order that we can control a fric-
tional state and textures by elastic waves in the ta-
pered plate. With higher frequency, an edge of the
amplitude attenuation is steep. Therefore higher spa-
tial resolution is obtained.
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Appendix : Relation between the ta-

pered plate equation and the Bessel dif-
ferential equation

A Bessel differential equation

+ (1 - Z—:) u = 0, (37)

d?_u 1du
dz?  zdz

is transformed into

d*v  1-2adv . , o —n?c?
d_z'z + e E + (bQCZiZIQC_Z + T) u = 0,

by the transformation of variables,

u = z ‘. (40)

a tapered plate equation with a real wavenumber is
obtained:

2
%+k2xv = 0 (42)

A general solution for the Bessel equation is

v =

AJu(z) + BJ_(2). (43)

Thus, by the transformation of variables, a general
solution of the tapered plate equation is

NES <AJ% <§kx3> +BJ_, (%kﬁ))@u)

In a similar manner, the tapered plate equation
with an imaginary wavenumber

v =

d? . )
dTgZ—kzmz = 0 (45)

is obtained from the modified Bessel equation
d®>uv  1ldu n?
- — |14+ — = 0 46)
PR ( " 22> b (

by the same transformation of variables. Using a so-
lution of the modified Bessel equation which becomes
zero when |z| — oo;

v o= CK.(2), (47)

a solution of the tapered plate is

v =

oviIK, (SHatt), )

where K is a modified Bessel function.
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