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Abstract

The acquisition of an inverse-kinematic model is
required for motor control in humans. With the
direct inverse modeling method that is a conven-
tional method, a sufficient inverse model cannot
be obtained when the input and output correspon-
dence of the target system is not one-to-one and
is non-linear. The problem of seeking the inverse-
kinematic model of the human arm, including a
wrist, falls into this category. In this report, we
propose an inverse model which has an output er-
ror feedback path, and determines the input for the
target system by means of iterative improvement.

Hand position feedback control of a multi-joint
manipulator in working coordinates includes the
non-linear gain of the joint angles, for example, the
pseudo-inverse of the Jacobian matrix. In this re-
port, we show that learning of the hand position
feedback gain is possible with the output feedback
inverse model.

1 Introduction

By using neural networks, several models of
the human motor control system have been de-
veloped. The acquisition of the inverse-kinematic
and inverse-dynamic models is the main problem.
Kawato et al.[1] pointed out that in motor control
in humans, the formation of inverse models is nec-
essary but the inverse model learning is an ill-posed
problem.

Kuperstein[2] and others developed human
inverse-kinematic models composed of neural net-
works by using the direct inverse modeling method.
With this method, a sufficient inverse model can-
not be obtained when the correspondance between
the input and the output of the target system is
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not one-to-one and is non-linear. The learning of
an inverse-kinematic model for the human arm in-
cluding a wrist joint is one such problem.

An inverse model of general systems can be ob-
tained by the forward and inverse modeling method
proposed by Jordan et al.[3]. The back-propagation
method is necessary for this method. The possib-
lity that the back-propagation occurs in the human
nervous system is very small. Consequently this
presents one serious problem as a human model.

The feedback error learning scheme, proposed
by Kawato et al[l], is able to learn an inverse-
kinematic model in a motor system with redun-
dancy. However it is considered that the visual
feedback controller is acquired by learning. To ex-
plain the motion control through eyesight in hu-
man, new methods that can acquire the inverse-
kinematic model are necessary.

In this report, we propose a kind of inverse model
which we call the output feedback inverse model
and the learning method of this model. The output
feedback inverse model uses the difference between
the output of the target system and the desired
output as feedback and finds a solution through
iterative improvement.

It is shown that the learning of the non-linear
gain for the hand position feedback controller
is possible through the output feedback inverse
model.

2 Inverse Model Learning

Consider the motion of carrying the hand to a
target point in space. The generation of a motion
which carries the hand to a target position is one
type of the inverse problem. In order to solve that
problem, an inverse model for the generation of the
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proper joint angles from the hand’s target position
must be formed in the human nervous system.

Denote the m dimension input vector designated
as z, and the n dimension output vector as y.
When the static system y = f(z) is considered, in
the equation y = f(g(y)), ¢ represents the inverse
model.

When the inputs and the outputs are provided,
the non-linear learning element that can approxi-
mate any continuous function is designated as ®. @
may approximate the target system by minimizing
the performance index

N
E=7) (f(z:) - ®(=:)) o)

i=0

Among the neural network models which are
able to approximate any continuous function, there
are the multi-layer neural network created through
back-propagation learning, Albus’ CMAC, Koho-
nen’s topographic mapping, and others. Represen-
tative inverse model learning methods are shown in
this section.

2.1 Direct Inverse Modeling

The direct inverse modeling (DIM) has been ap-
plied to the learning of motor control by Albus[4],
Kuperstein, and others, and is a method into which
much research has been conducted for a long time.

DIM uses the target system’s output as input
to the inverse model and use the target system’s
input as the teaching signal of the inverse model.
The conceptual diagram of the method is shown in
Fig.1.

Target <1 Inverse
System Model
x y

Figure 1 Direct Inverse Modeling

If the learning element & is used in the inverse
model, DIM minimizes the performance index

N
E= (2 - (f(z) @
=0

When the correspondence between z and y
is one-to-one, there are no problems with this
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method. However, problems arise when the cor-
respondance between input z and output y is not
one-to-one.

In cases where there are multiple inputs = which
correspond to one output y, the ideal inverse model
learned through DIM will generate z.,, the aver-
age value of z which generates y, when y is inserted.
Z,, generally does not correspond to y. In cases
such as this, the inverse model cannot be realized
with sufficient precision. A human arm which in-
cludes a wrist joint is one such system.

2.2 Forward and Inverse Modeling

The forward and inverse modeling (FIM) was
suggested by Jordan to remove the deficiencies of
DIM. This method tries to minimize the perfor-
mance index

N
E= E(yi - f(@(w)))? (3)
=0

However, the teaching signal cannot be commu-
nicated through the target system f(). In place of
f(), the target system’s forward model @y can be
used, and the performance index is changed to

N
E= (s — %m(®w)) (4)
=0 .

& and @ are regarded as one network, and
the learning is carried out. The back propagation
method (hereafter referred to as the BP method) is
essential in this method, because with other learn-
ing systems, the error signal cannot be communi-
cated from the forward model to the inverse model.
This is shown in the conceptual diagram in Fig.2.

Figure 2 Forward and Inverse Modeling

Since the possibility is only slight that the human
nervous system utilizes the BP method, this model
is doubtful as a model of human learning.




2.3 Feedback Error Learning Sche-
me

The feedback error learning scheme (FEL) was
proposed by Kawato et al. as a human motor learn-
ing model. Not only is this reasonable as a human
motor learning model, but also it has a high degree
of industrial applicability. FEL is a method which
uses the output of the feedback control circuit as
the teaching signal for the inverse model. FEL
requires feedback control circuits. The conceptual
diagram of the method is shown in Fig.3.

Feedback

Target

Controller System

Figure 3 Feedback Error Learning Scheme

It is believed that the correspondence between
the hand position measured by vision and the joint
angles is acquired by learning. Therefore a human
visual feedback controller is acquired by learning,
too. FEL is not applicable.

3 Owutput Feedback Inverse
Model

The incompleteness of DIM is partially avoided
by the linearization of the target system and the
utilization of a feedback path.

3.1 Direct Inverse Modeling for a
Linear System

Consider the inverse model learning for a lin-
ear system. Since the target system is linear, the
learning element @ is designated as ®(z) = Wz,
and the learning takes place in W. We provide in
succession the sets of input z (m dimension vector)
and output y (n dimension vector) as the learning
data. Inverse model learning is conducted either by
the BP method or orthogonal learning. W, which
represents the inverse model, is renewed according
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to the following equation,

N

W*=W+ nZ(z, - Wg,l,,)y;{,r (5)
p=0

where 7 is a learning-coefficient. From W* = W,
and y, = Azp,

AT —WAAT =0 (6)

can be realized. When n < m, and AA7 is a normal
matrix, then the following solution is acquired.

W = AT(44T)!? "N

This is the pseudo-inverse matrix of A. When learn-
ing the linear system’s inverse model using DIM,
the inverse model which generates the minimum
norm solution can be learned. When n = m, and
A is a normal matrix, then

W=A"! (8)

results. In any case, when the inverse model’s
output Wy is put into the target system, then the
output of the target system becomes y. In the
case of n > m, W fulfills the conditions of (6).
The solutions of equation (6) includes the matrix
(AT A)~1 AT which provides the least squares solu-
tion in regard to.input y, but the least squares so-
lution is not always obtained. When there is noise
with variance rI, in the teaching signal y, equation
(6) becomes

AT _W(AAT ++1,) =0 9)

and, through the inverse matrix lemma,

w AT(AAT 4 r1,)t

(ATA 4 r1,)" AT (10)

If r is an infinitesimal number, the inverse model
approximates the least squares method.

In a linear system, even if there are redundant
degrees of freedom, learning of the inverse model is
possible through DIM. Therefore the incomplete-
ness of DIM is avoided by the linearization of the
target system.

3.2 Output Feedback Inverse Model

Another problem of DIM is that large-scale con-
nection changes must be carried out before the in-
verse model is used for control. The desired value



must be input into the inverse model instead of the
actual value. By adding a feedback path to the
inverse model, this problem is partially avoided.

Consider the inverse model & which has the out-
put error feedback path.

(t +1) = &(=(t), ya — ¥(1)) 1y

This system configuration is shown in Fig.4.

+ Ax(t)

Target

u System .

T y®
()

Figure 4 Output Feedback Inverse Model

We assume that the motion generator has two
modes, z oriented mode and y oriented mode. The
input of the target system is fully controlled in the
z oriented mode and the output of the target sys-
tem is fully controlled in the y oriented mode. The
y oriented mode does not work correctly without
learning.

In the z oriented mode, z is fully controlled and
va is equal to y = f(z). The output of ®(z,0)
should be z. By learning, the equation

&(z,0) =z (12)

is established.

In the main learning mode, learning is carried out
as indicated below with the prime leader designated
as the changes of the target system’s input x.

In the learning mode, assume that the initial
value of the input of the target system is z(0)
and the output is y(0). The desired output yq is
changed as

ya(t) = y(0) + Aya(t) (13)

The output of the inverse model ®(z(t), ya(t) —
y(t)) is designated as zo(t):

zo(t) = B((t), ya(t) — (1)) (14)

and z(t + 1) is the sum of zo(t) and the noise
vector Az(t):

z(t + 1) = zo(t) + Az(t) (15)
The output of the target system becomes

y(t +1) = fz(t + 1)) (16)
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Then the inverse model output becomes
zo(t+1) = ®((t + 1), valt +1) — vt + 1)) (17)

zo(t) is used for the teaching signal for
®(z(t + 1), ya(t + 1) — y(t +1))-
Therefore the performance index

N
E = Y (a(t+1)-Az(t)
1=0
—®(z(t + 1), 5alt + 1) = f(z(t + 1))’

(18)

is minimized in the learning mode.
First , we analyze the case where the target sys-
tem is linear and the learning element is also linear.
y= Az (19)
&(z,Ay) = z+ WAy (20)

The learning takes place in W.
z(t) is renewed according to the following equa-
tion,

z(t+ 1) = 2(1) + Az(t) + W(ya(t) — Az(t)) (21)
e(t) is designated as
e(t) = z(t) — z(0) (22)
and the following equation is obtained.

Az(t) + e(t) + W(Aya(t) — Ae(t))
(I = WAYe(k) + Az(t) + W Aya(t)

37 B(t - i)(Az(i) + WAy(t))

e(t+1)

1l

i=0
(23)
where B(j) = (I - WAY.
The performance index become
N
E=)_pt)? (24)
1=0

) = zolt) = (a(k+1)+ W(ya — Az(k +1)))
—(I - WA)Az(t)
—W(I = AW)(Aya(t) - Ae(k))
—W(Aya(t +1) - Aya(t))

(25)
The value of the error feedback is

q(t) va{t+1) — Az(t +1)
—AAz(t) + (I — AW )(Aya(t) — Ae(t))
+(Aya(t +1) — Aga(?)) (26)

1l



The matrix W that minimizes E is given by

N
3 p(t)e(t)T =0 27)
t=0

Because Az(t) and

r(t) = (I —AW)(Ay4(t) — Ae(t))
+ (Aya(t +1) — Aya(t)) (28)

are independent,when W converges for very large
N)

(I-WAR AT —WRy; =0 (29)
N
Ri= %gm(t)m(t)" =r  (30)
1 N
Ry = PROLO (31)
t=0

If r(t) converges,

w

AT(AAT + lR,)-l
Tz

(reATR;'A+ 1)7'AT  (32)

is obtained. Because the solution is the product of
the transpose of A and and a non-negative sym-
metrical matrix, this matrix can make y(t) close to
ya(t). But if |ya(t + 1) — ya(t)| is too large, W dose
not converge.

If ya(t) is kept constant, or y4(t) is used in place
of y4(t+1) in the equations from (17) to (32), then

(I - WA)RAT - W(I — AW)R(I - AW)T =0

(33)
N

Re= 2 (Bualt) - Ae))(Bya(t) - Ae(t)”
1=0 (34)

are obtained. One solution of the above equation
is
W = A* = AT(4AT)! (35)

W usually converges on this solution by learning.

3.3 OFIM Based on Infinitesimal
Changes

To acquire the output feedback inverse model for

a non-linear system, |Ayl, le(t)] and |Az(t)| must

be kept sufficiently small so that & and f can be
linearized.

&(z, Ay) = ®(z,0) + W(z)Ay (36)
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f(z + Az) = f(z) + A(z)Az 37

Also, unlike the learning of a linear system, the
learning of a non-linear system must be carried out
for many z(0) and Ayy. The performance index is

N
Z(zoi(t) = ®(x:i(t), yai — Fz:i(t + 1))))?

=0
(38)
The performance index can be approximated as

M N
33 (A

=0 t=0

—W(z:i(1))(yai — f(z:s(t +1)))2
M N
= 303U - Wizi() Az (1)) Az()

=0 1=0

—W(z:i(1))(Ayas — A(z:i(t))ei(t)))? (39)

One solution of W(x(t)) that minimizes the perfor-
mance index is

Mk

E=

1]
o
-

E

2

W(z(t) = A*(z(t))
= A(z(t))T (A=) A=@)T)
(40)
Therefore the output feedback inverse model
&(z,Ay) = z+4 W(z)Ay
= z
+ A2) (A(2)A(®)T) " (va - f(2))
(41)
is obtained.

When the difference between yq and y is suffi-
ciently small, the feedback circuit conducts the re-
placement operation for the purpose of bringing y
close to the target ys. Even in the case where z is
separated from the true solution, z ultimately can
be made to converge upon the approximate value
of the true solution through iterative improvement.

In the event that the initial value of z is far from
the solution, |Ay| = |yg— f(z)| becomes larger, and
when (z, Ay) enters the domain where no learning
is being carried out, the guarantee that the out-
put y approaches yq disappears, when the inverse
model’s output ®(z, Ay) is put into the target sys-
tem. Instead of y4, the virtual desired value y} can
be used. y} guarantees the stability of convergence
and is defined as

Va=y+Ay=y+KQ@ys-vy) (42)



using a sufficiently small gain K or, using the sat-
uration element sat concerning each component of

v,
vy =y+Ay=y+sat(ya—v) (43)

Changing y4(t) by
va(t) = ¥t - 1), (44)

the learning becomes faster and the precision is im-
proved. In this case, the performance index

E=Y (z— &z + Az, f(2) - f(z + Ax)))* (45)

should be minimized. This performance index is
equivalent to

E = Y (z+48z- %z f(z+A2) - f(2)))’

> (A - W(z)Ay) (46)

The problem with OFIM is that there are two
modes, a learning mode and a control mode, and
that the modes cannot be conducted simultane-
ously. |Az(t)] must be zero during the control
mode. However, it is difficult to believe that the
eyesight-based control is properly established in in-
fancy, during which time it is believed that the
correspondance between the hand position and the
eyesight and the joint angles is acquired in humans.
We think that this period corresponds to the learn-
ing mode, and that the inverse model formation is
carried out.

The second problem in the case of the non-linear
system which has a redundant degree of freedom
in the input is that, strictly speaking, y does not
conform to y4. The distribution of Az(t) is limited
to a small domain (JAz(t)] < rz). An error which
is proportionate to the square of r; remains. When
r, becomes greater, the correspondence between in-
put and output can no longer be approximated by
a linear relationship, and there is a decrease in ac-
curacy. But if Az is too small, then many iterative
operations become necessary, and it takes too much
time to calculate the solution.

The third problem is that since learning is con-
ducted with regard to z only in a small domain
which can be linearized, when the function of the
target system contains multiple crests and valleys,
z do not always converge on a correct solution
through the initial value of . = sometimes con-
verges upon local minimum solutions.

There is also a formation in which the inverse
model’s output is added onto z’s current value, as
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a variation of the output feedback inverse model.
Its conceptual diagram is shown in Fig.5.

Target
System

¥y

x®)

Figure 5 Output Feedback Inverse Model

The output of OFIM approximates the min-
imum norm solution locally. OFIM fulfills the
characteristics of human hand positioning, because
large joint angle changes seldom occur in human
hand positioning.

3.4 OFIM Based on Velocity
OFIM based on infinitesimal changes converges

on approximate solutions. Paying attention to the
input and output time differential relation

y=A(z)z (47)
the correspondance between the time differential of
the input and that of the output of the system is

linear. As well as OFIM based on infinitesimal
changes, a kind of inverse model

T, = &4+ W(z)(ya— A(z)&)
~ &+ A*(z)(da — A(z)z)  (48)

can be obtained. If y4 is kept constant,
W(z) = A*(z) (49)

is obtained.
Assuming

va = K(ya— ) (50)
and that a controller that realizes velocity com-

mands exists in humans, a velocity integration type
inverse model

z=z(0)+ / A*(2)K (yq — y)dt (51)

can be obtained. The configuration of the model is



shown in Fig.6.

Target
System

y©

x(1)

x(t)

Figure 6 Output Feedback Inverse Model
Based on Velocity

If Euler’s method is used as the method of inte-
gration, an equation, which is the same as (4)

2(t+1) = 2(t) + A*((O)K(va - y()At (52)

may be obtained. OFIM based on velocity con-
verges precisely upon the true solution, but as with
OFIM based on infinitesimal changes, learning
and control cannot be carried out at the same time
and the deficiency of lapsing into local optimum
solutions still remains.

In this method, the velocity components of the
system are necessary as teaching signals and a sen-
sor for the detection of velocity is required. And
a controller that realizes velocity commands is re-
quired. It is believed, however, that the motor con-
trol system of humans has such sensors and eye
movement control is carried out in terms of veloci-
ties of eye, head and body.

4 Hand Position Feedback
Control of Manipulator

In this report, manipulator control through eye-
sight is regarded as manipulator control using hand
position.

Designating the hand position vector z and the
joint angle vector ¢, the manipulator kinematics
are expressed as

z = f(8) (53)

where f is a non-linear function. Ordinary manip-
ulator dynamics can be expressed as

R(6) 6+508,6)0+90)=u (59

The joint angle torque is represented by u. g(0) is
a function of # and represents gravitational forces.
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4.1 Joint Angle Feedback Control

For the feedback control of the path defined by
the manipulator’s joint angles, PD feedback con-
trol with compensation for the gravitational effect
is used as follows.

u = g(0) — Kp(6 — 04) — Kp(6) (55)

PID feedback control can also be used. Suf-.
ficient control is not possible with only feedback
control, but the effects of parameters such as ac-
celeration, velocity, gravity, etc., can be learned by
using the feedback error learning scheme of Kawato
et al.

4.2 Hand Position Feedback Control

The actual movement path of a robot is usually
defined in the working coordinate system. With
trajectory control defined in the working coordi-
nate system of the robot arm with a redundant
degree of freedom, the transpose of the Jacobian
Matrix

J(8) = 0z/00 (56)
is used, and PD feedback control is carried out by
u=g(6) - J(O)T Kp(e —za) — Kpd  (57)

or with the pseudo-inverse matrix J*(f), by
u=g(f) - J*(®)Kp(z —za) — Kpb  (58)

The PID feedback control can be applied in a sim-
ilar manner.

The position feedback control system usually
contains the non-linear gains J(8)TorJ*(6). With
a constant gain, control on some states of the arm
is not possible. It is unlikely that the non-linear
gain is innate in humans. It is believed that this is
acquired through learning.

4.3 Application of the Output Feed-
back Inverse Model to Hand Po-
sition Control

When applying OFIM to the hand positioning

system, one type of inverse model which renews the
joint angles may be obtained as

8s =0+ KJ*(0)(za—z) (59)
When this is provided to the joint angle feedback
controller,
Kp(8a—0)+ Kp(-f)
Kp{0+ J*(0)K(za—z)— 0} + Kp(-9)
KpJ*(0)K(zq — z) + Kp(-6) (60)

u



a position feedback control circuit may be obtained.
The composition of a control circuit is shown in
Fig.7.

Focdback || Human
[Controlier Am

' (1)
ow| [e®

Figure 7 Hand Position Feedback
Controller

5 Simulation

Numerical experiments were performed in order
to evaluate the performance of OFIM. The ap-
proximation problem of y = cos(z) and the prob-
lem of calculating the joint angles for the purpose
of bringing a hand to a target position were consid-
ered. In those experiments, the learning elements
were the multi-layer neural network using the BP
method.

5.1 Output Feedback Inverse Model

Hereafter, OFIM1 refers to OFIM on infinites-
imal changes, and OFIM2 refer to OFIM based
on velocity. In these experiments, no technique
for the stabilization of convergence was used for
OFIML1. Hereafter, in the tables, o will refer to the
root square sum of output errors of the data that
converges on the true solution ( |ys — y| < ry), PS
will refer to the percentage of success of the conver-
gence in simulation, EM will refer to the maximum
value of output error norm, and N1 refers to the av-
erage number of repeated loops until convergence.

OFIM2 used equation (52) and KAt was 1.0.
The output of the neural network has been scaled
at (—0.45,0.45). The variance of z for OFIM is
fixed at 0.01.

(1) Approximation of cos(x)

The approximation of cos(z) was carried out
with respect to the domain (—=, 7). The com-
position of the forward model was four layer net-
work (1-4-4-1), that of the inverse model was (1-
8-8-1), and that of OFIM was (2-8-8-1). The re-
sults are shown on Tab.l. The initial value of z
in OFIM was fixed at (z = 30°). In all cases, z
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converged on the true solution with both OFIM1
and OFIM2. By FIM, OFIM1land OFIM2, in-
verse models were successfully obtained, but this
was not possible by DIM.

Table 1 Simulation Results

DIM FIM OFIM1I OFIM2

g 1.2 0.041 0.0015 0.0067
EM 1.9 0.087 0.0056 0.011
NI - - 25.6 23.7

(2)Arms With Two Degrees of Freedom on a
Plane
Consider the control of a two degree of freedom
manipulator moving on a two-dimensional plane.
The relationship between the joint angles (61,62)
and the hand position (z,y) is expressed as

z=2zo+ Ly cos(01) + Lo COS(01 + 92) (61)

y = yo + Li1sin(61) + Lasin(6; + 82) (62)

We sssume a range for 0 which corresponds
roughly to the human wrist joint (—60°,60°).
Without considering the attitude of the hand, con-
sider the problem of finding the joint angles (63, 62)
which realize the hand position (z,y).

The composition of the inverse model was (2-
15-15-2) and the composition of the feedback cir-
cuit was (4-15-15-2). Learning was carried out over
100,000 examples. The initial value of the joint an-
gle (81,02) was (45°,15°).

The error for each inverse model is shown in
Tab.2. The units are in cm.

Table 2 Simulation Results
DIM FIM OFIM! OFIM?

o 4.0 1.2 0.3 0.5
EM 58 3.8 1.5 2.0
NI - - 33.2 83.2

OFIM1 and OFIM2 did not converge on any
local minimum solusion. By FIM, OFIM1land
OFIMZ2, inverse models were successfully ob-
tained, but this was not possible by DIM.

(3) Arms With Three Degrees of Freedom on a
Plane
Let’s consider the control of a three degree of
freedom manipulator moving on a two-dimensional
plane. The relationship between the joint angles
(61,82, 63) and the hand position (z,y) is expressed
as

z = xzo+ Licos(6;)+ Lycos(fy +82)
+L3 cos(f; + 02 + 83) (63)



v = y+L sin(ﬂl) + Ly sin(al + 02)
+L3sin(f + 62 + 03) (64)

This is a simplified model of the human arm mov-
ing on either a horizontal or vertical plane. Assum-
ing movement over a vertical surface, the possible
range for 83 which corresponds to the wrist joint
is designated as (—60°,60°). Without considering
the attitude of the hand, consider the problem of
finding the joint angles (6,02, 63) which realize
the hand position (z,y). The composition of the
inverse model for DIM and FIM was (3-15-15-3)
and the composition for OFIM1 and OFIM2 was
(5-15-15-3). The composition of the forward model
for FIM was (3-15-15-2). Learning was carried out
over 1,000,000 examples. The initial values of the
joint angles and the desired position were given as
random numbers. The simulation was carried out
for 1000 examples. ry,the threshold that distin-
guishes the success of the convergence, is 10 cm.
The accuracy is expressed in Tab.3.

Table 3 Simulation Result

DIM FIM OFIM1 OFIM?
4 56 24 0.6 1.2
PS 466 98.0 99.3 96.0
EM 112 93 3.3 45
NI - - 30.2 102.0

By FIM, OFIM1 and OFIM2, inverse models
were successfully obtained, but this was not pos-
sible by DIM. OFIM1 and OFIM2 sometimes
converged on local minimum solutions. This prob-
lem can be avoided by changing the initial value.
This composition of the circuit cannot produce ac-
curacy on the level of a human, but it is considered
possible if there are sufficient elements.

104 +
3
= 10
s —_
g OFIM1
I OFIM2
g
& 10!
3
[
g 1
a
. o0y el R
-i - - -
23 e
® 10 \_ e
10-34 b v
0 100 200

iteration Number

Figure 8 Rate of Convergence
The rate of the convergence for OFIM is shown
in Fig.8. OFIM2 quickly minimize the output
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errors but takes some time until the convergence.
The path of hand using OFIM1 after various it-
eration number is shown in Fig.9 and the path of
hand using OFIM2 is shown in Fig.10.
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Figure 9 Path of Hand (OFIM1)
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+
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Figure 10 Path of Hand (OFIM2)

(4) Feedback Effects

In order to see the feedback effects, after the
learning of the inverse model, the parameters of
the target system were changed, and the experi-
ment was repeated.

We tried extending the length of the wrist to 5
cm, and the results are shown in Tab.4. It is un-
derstood that model error compensation is possible
through feedback circuit.

Table 4 Simulation Results

DIM FIM OFIM1 OFIM2
o 87 74 1.1 14
PS 1.0 200 94.5 95.7
EM 99 9.8 7.57 9.4
NI - - 34.4 105.1

5.2 Hand Position Feedback Control

In order to investigate the possibility of a hand
position feedback controller which combines a joint
angle feedback controller and OFIM, a numerical
experiment of control of a manipulator with three



degree of freedom over a two-dimensional plane was
conducted. The composition of OFIM is (5-20-20-
3), and learning was carried out with one million
pieces of data. The results of the feedback control
conducted using a pseudo-inverse matrix and the
feedback control using OFIM1 obtained through
learning are shown in Fig.11. And the feedback
control using OFIM2 is showm in Fig.12. Re-
newal of the value of the joint angle in OFIM was
carried out every 50 msec.

Sufficient control is not possible because the feed-
back gain is relatively small and the feedforward
effect is not considered, but finally there is con-
vergence on the target position ( position error is
about 2mm). In order to improve the ordinary
feedback controller’s performance, it is advisable
to use Kawato et al.’s feedback error learning.
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Figure 11 Hand Position Feedback Control
using OFIM1
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Figure 12 Hand Position Feedback Control
using OFIM2
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6 Conclusion

We proposed a new method which obtains an in-
verse model of a system whose inverse model can-
not be obtained using the direct modeling method.
We corroborated its performance through numer-
ical experiments. The output feedback inverse
model (OFIM) had a satisfactory performance
over all experiments.

When modeling the human arm, only an inad-
equate kinematics-inverse model can be obtained
with customary direct inverse modeling, but satis-
factory accuracy could be obtained with the output
feedback inverse model.

In addition, by using the output feedback inverse
model, it is shown that learning the non-linear gain
of the hand position feedback controller is possible.

In infancy, humans cannot control their hands
or feet well. It is believed that learning the inverse
model of changes of hand position through eyesight
is done and that may be used as a basis for carrying
out control. This leaning is possible by using the
output feedback inverse model.

OFIM based on infinitesimal changes and
OFIM based on velocity still have some problems.
However human hand position control learning is
possible with them.
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