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Abstract

One of the distinguished characteristics of
human binocular visual space is the phenomenon
which is represented as horopter and
parallel/distance alleys. In this paper neural
network models of space perception using
binocular vision are presented to find out how the
convergence angle and the bipolar latitude are
mapped onto the depth sensation. One of the
proposed models based on neural network model
shows the characteristics of horopter and
parallel/distance alleys which is similar to the
human space perception. Structure of the model
represents how the space perceptions generated in
the human brain.

I. Introduction

Human space perception is highly relation to
the visual sense, and knowledge of the
characteristics of visual space perception is
essential to research on three-dimensional human
space perception. Human can perceive the
location of a spot of light, and the distance
between the spots by binocular vision even in
complete darkness or a space where no spatially
secondary cue is present. In these cases, the
subjective straight line in the visual space to the
objective point becomes the reference. Various
psychological studies of this phenomenon are
available, and the horopter, parallel/distance alleys
are well known as the tools which represents its
characteristics.

To investigate the characteristics, the head of the
subject is fixed so as to make it immovable and
all other cues in visual space are eliminated by the
use of a dark room. Plural small spots of light are
displayed in front of the subject in the horizontal
plane at the height of the subject's eyes, and these
light spots are moved so that they are seen by the
subject to be on the same straight line
longitudinally or laterally from the subject. The
light spots arrebged on a physically-straight line
is not necessarily subjectively straight, a
difference whose parameters can be shown to be
dependent on the distance from the subject.

That is, the arrangement of spots of light seen to
be subjectively parallel with the frontal plane have
a deviation from the corresponding physical straight
line at a certain distance Xa from the subject. But
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when spots of light are arranged on a curve convex
to the subject at a place farther than Xa or when
they are arranged on a curve concave to the subject
at a point nearer than Xa, they are observed
subjectively as a straight line. This curve is called
the horopter of Helmholtz (Fig. 1(a)) [1].
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Fig.1. (a) Horopter curves for different
fixations. This is a top view. L and R are left
and right eye positions. (b) Convergence
angle ¥ and bipolar latitude ¢ of a physical
point P. Vieth-Muller Circle is a curve of
constant convergence angle.

Horopter can be observed in each person. In
general, different persons produce the different
curves. However, each person has own horopter
and parallel/distance alleys.

As for the curving of visual space, Luneburg has
presented a geometrical theory of human space
perception based on the Riemann and
Lobatchevskii space having a certain curvature [2].
Based on the theory, Zajaczkowska {3] and Indow
et al. [4] are studying on how to describe the
curves.
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The characteristics of the human visual
space have been analyzed geometrically in detail as
psychological phenomenon, but their origin has
not been discussed.  Originally, information used
by humans actually in the process of space
perception under the condition of horopter
measurement is the orientation of the right and
left eyeballs as they gaze at a spot of light, while
perception of orthogonal coordinates, such as the
parallel plane and parallel straight lines, is based
on concepts developmentally acquired, rather than
innate sensations. Therefore, it scems that some
learning mechanism between them should exist.

In this paper, the characteristics of
spatial vision are taken as those of a signal
processing system in which the subject learns
orthogonal space perception. Neural network
models of space perception using binocular vision
are introduced to construct the signal processing
model which can describe space perception
characteristics similar to those human shows in
horopter and parallel/distance alley situations.
Also through the consideration of signal
processing using such models, signal processing
mechanism in human space perception will be
cleared [5].

II. A Space Perception Model with
Horopter

A . Human space perception model

In general experiments of the horopter and
parallel/distance alley, small spots of light on a
horizontal plane which is at the subject's eye height
are used as an index. Therefore, eye movement is
limited to the horizontal in our models of the
perception system.

Convergence angle 7 and bipolar latitude ¢ are
considered as information used for human space
perception (Fig. 1(c)). Originally, right and left
eye movements in binocular vision are not
independent, but consist of conjugate eye
movement of the same phase determining the
bipolar latitude ¢ and convergent eye movements of
the counter phase determining convergence of angle
7. These movements are considered to have a closer
relationship with space perception than are the
independent movements with directions o, § of the
right and left eyes. This assumption is proved by
the fact that the conjugate eye movement system
and the convergent eye movement system are
independent, and that eye muscle length
determining « and B is not used directly to
recognize the direction of view. The relationship of
these two sets of signals is represented in the
following two formulas.

y=n-(a+f)
¢=(B-a)/2 0

When the distance between the two eyes is 2E,
the point P = (x,y) can be represented with yand ¢
as follows:

x= X(g,qb)
=sin(w {cos(;ﬂ + cos(2¢) }
y =YV
=Sny (28) @

The space perception model is considered to be a
system for learning to coordinate the relationship of
(¥, ¢ 10 (x.y), and on this basis the neural network
models were formed.

In general horopter experiment, convergence*
was used as a physiological cue which generates
depth perception. The points on the Vieth-Muller
Circle (hereafter VMC) shown in Fig.1(c) must
appear equidistant because convergence angle 7 is
constant at these points, but the horopter is
generally positioned outside the VMC in relation to
the subject. This indicates that generation of depth
perception does not depend only on the convergence
angle ¥, but also depends on the bipolar latitude ¢.
Therefore, our neural network models have to have
some structure for interaction between these
signals.

B. Physiological background

Perception of space is not purely visual but
involves also the subject’s body position and
posture. It is the thought that input signals from
various sense organs such as semicircular canals,
the internal ear, etc. are integrated with visual sense
and eye movement information in the brain. The
portion of the brain most important for integral
space perception is thought to be the parietal
association cortex of the cerebral cortex [7]. In the
cortex, the neural cells activated by gaze fixation on
a small spot of light in space are found in area 7a
of the posterior parietal association cortex**{8]
These cells are a kind of visual fixation neuron (VF
neuron). Reaction of the cells by gaze fixation on
spots of light are classified into three types as
follows:

* Originally, binocular parallax was thought to
be an effective biological cue to depth perception
under these conditions. However, when the subject
can use only binocular parallax without eye
movements for gazing, the horopter is not normal
but coincident with VMC [6]. Therefore, it is
supposed that binocular parallax is not concerned
with the generation of the horopter.

**Qbtained from experiments on alert monkey
behavior and the existence of these VF neurons can
be estimated in humans.
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Type 1: Neurons with selectivity in different
directions of gaze along vertical, horizontal and
diagonal axes. Their discharge rates are monotonic
increasing functions of deviation from the center.

Type 2: Neurons with selectivity in the depth of
fixation. Their discharge rates are monotonic
increasing or decreasing functions of distance from
subject, regardless of the direction of the gaze.

Type 3: Neurons with selectivity both in the
direction and distance of gaze fixation. Their
discharge rates increase most by gaze fixation on
the region previously specified three-dimensionally
in space.

Selectivity of these neurons is controlled only by
gaze direction and is less affected by background. It
is considered that these cells have a close
relationship with recognition of space location in
eye movement [7].

C. Signal representation in biological
systems by neural network models

Two signal representation models are discussed in
this section. One uses the location of the firing
cells and the other uses their firing rate.

There have been various discussions from the
viewpoint of neural network model of how a
biological system represents various signals in the
brain. One of the problems discussed is whether the
signal space is represented in the brain by the
localization pattern of the firing cells or by the
firing rate of the cells. That is, there are two
concepts. In the first, a set of signals is assumed to
form a signal pattern and the signals are represented
by neural cells with selectivity to a particular set of
values (Fig.2(a)). In the second, signal's values are
represented by the firing rate of cells independent of
each signal (Fig.2(b)). In practice, these
representations are found in the brain as the output
of a column of a sensory area and that of the
sensory organ respectively, and either is said to be a
general information representation mechanism.
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Fig.2. (a) A model of signal representation using
localization of firing cells. (b) A model of signal
representation using cell firing rate.

In addition, in models with different
representation forms of signals, interaction among
signals is also different. In the model of signal
representation using localization of the firing cells
shown in Fig.2(a), the set of input and output
signals is combined through a cell, resulting in a
kind of associative memory model. In the model of
signal representation using the firing rate shown in
Fig.2(b), the set of signals has mutual interactions
resulting from repetitive addition of signals and
conversion of the sum; this results in a structure
which is a variety of multilayer network.

From the representation form of signals for the
VF neurons described above, it was found that Type
1 and Type 2 correspond to the firing rate
representation in Fig.2(b) and Type 3 to the
localization representation of the firing pattern in
Fig.2(a). Thus, both models are considered to be a
potential model of human space perception. The
models are classified as follows in terms of the
structure of biological system information

processing:

[ Localization Model ]

This is a model of signal representation
using localization of firing cells.

In the case shown in Fig.2(a), it is possible
to determine the mapping of two sets of two-
dimensional signal spaces on a nerve field
which is self-organized into two-dimensional
topography (Appendix Fig.5(a))(9]. In this
model, each of the cells arranged in a two-
dimensional lattice represents a specific region
of the signal space, and there is a uniform
coordination throughout the lattice of input and
output values for each specific region.

[ Firing Rate Model ]

This is a model of signal representation
using cell firing rate.

In this model, the form of information
processing is further classified into three kinds
of models.

In the case shown in Fig. 2(b), vy and ¢ are
represented by the firing rate of independent
cells, and the effect on X and Y is thought to
be additive. The reason interaction among
signals is limited to addition is because signal
processing in the neural network is basically an
operation of weighted addition, as in the neuron
model of MaCulloch-Pitts, which derives from
various physiological phenomena. This
assumption makes the model more natural.
Such a model is represented in Fig.3(a). The
structure of this model is given in the
following formula:

X=FI(DUY+C2AP ),

¥ =F2(D29) + Ci(1)) G.a)
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This model is the prototype of models
represented in Fig.3(b), (c) and (d), in which
some nonlinear transfer functions concerning
leaming (F1, F2, D1, D2, CJ, C2) are limited.

Fig.3(b) represents the direct conversion
model without mutually-correcting terms CJ,
C2 between yand ¢ signals,

X =Fi(y .,

Y =F)¢) 3.b

Fig.3(c) represents the model in which
mutually-correcting addition is made on the
input signal space before conversion,

X =Fi(y+Ca9)),

Y =Fa(¢+Ci(D) 69
and Fig.3(d) represents the model in which
mutnally-correcting addition is made to the

output signal space after conversion.
X =Di(p +Ca4).
Y =Dy¢)+ C1(p @34

With these one localization model and three
firing rate models, the solution of formula (2) can
be derived, and the signal processing structure
essential for defining human space perception
characteristics can be investigated. Using these
models, a neural network model for learning
nonlinear transformation has been prepared
(Appendix. Fig.5).

+

© @

Fig.3. (a) A prototype of firing rate models. (b) A
firing rate model without mutually-correcting
terms. (c) A firing rate model in which mutually-
correcting addition is made to the input signal
space before conversion. (d) A firing rate model in
which mutually-correcting addition is made to the
output signal space after conversion.

1. Experimental Method

In the experiment, learning was performed with
the neural network models described above and
represented in Fig.3(b), (c), (d) and Fig.5(a).
When learning a point (X,Y), a central point (X,0)
on the parallel plane is made the reference to X,
so that each transfer function is modified with the
signals in Table 1. Then, equal learning can occur

T

for each model except in respect of the terms of

mutually comecting addition.

E.earning Unit | D{| Dol F1} F2] €)1 Ca
Fig.3®)|x |- |- |7 |¢ —
C1.C2=0|y'{- |- |x}y| - -
Fig..3(c) | x G y 4
D1.D2=1 |y’ |- X Y| yy | 90
Fig..3(d) slyle]-|- y ¢
FLP=l 194X )Y |~ |- froao | x-0i»
Fig..5(a) | x = (7,

NerveField| y* ;=(§Z$))

"Table 1. Signals of each model for learning.
Parameters are defined in Appendix. y and ¢ are
the convergence angle and the bipolar latitude at
the learning point (X,Y).y' is the reference
convergence angle at (X,0) . ¢' is the reference
bipolar latitude at (Xg.Y) .

Respective constants are as follows:

E = 34mm

X4 = 2000mm

n=50

R=3

a =a’ =02 exp(-mi5000) “4)

and the point of leaming is within the region
represented by the following formulas.

{¢]-015<¢<0.15)

{X |500mm <X <2100mm } (5)

This is the visual region where depth perception
by convergence works most effectively.

When learning, the values of 7, ¢ are
normalized so that the maximum and the
minimum in the learning area become equal.
Leaning is compared after a number of learning
trials corresponding to (number of cells included in
the nerve field)/(number of cells learning at any
one time) for each model. Leamning of mmax =
20,000 trials was performed in the firing rate
model. Learning of mmax = 150,000 trials was
performed in the localization model.

IV. Experimental Results

As a result of learning with the model shown in
Fig.5(a) and Fig.3, the following horopters were
obtained. They are shown in Fig.4. Dotted lines
are VMC for control.

These figures are shown with the points plotted
using the method of adjustment to those of a
human subject.

The horopter tendencies for human subjects are
as follows:

1) The horopter becomes concave to the subject at
the near point.

2) The horopter becomes convex to the subject at
the far point.

1429



Y,
A

L { { g
0005 | 1.0} [1s %
05

(a) The localization model.
Y,
A

0.

[
|
S

051

(b) The firing rate model without mutually-correcting
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(c) The firing rate model with mutually-correcting
addition made to the input signal space.
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(d) The firing rate model with mutually-correcting
addition made to the output signal space.
Fig.4. Horopters of models. Dotted lines are VMC
for control.

3) The curvature varies continuously with the
distance from the subject.

4) The curvature becomes zerg at distance Xa
(Fig.1(a)). Xa is usually about 1000 to 1500
mm.

5) The curvature changes from concave to convex
only once. There is no change from convex to
concave.

6) The horopter is symmetric about the median
plane.

7) The horopter is always positioned outside the
VMC in relation to the subject.

(1) to (3) of these tendencies are represented in
Fig.1(a).

Concerning the firing rate model, Fig.4(b)
shows the direct conversion model in which the
mutually correcting terms of yand ¢, C; and C2
are not present, and the horopter showed almost
VMC. This was because depth perception was
dependent only on the convergence angle
information in this model ; this result was
expected.

Fig. 5(c) represents the model in which mutual
correction is made before conversion. In this
model, the curvature of the horopter varied from
concave to convex depending on the distance from
the subject, and the horopter showed a shape
similar to a human subject’s. Depth Xa, matching
the objective parallel plane was observed in the
vicinity of 1000 to 1500 mm ; this is also similar
to the value measured for subjects.

Fig. 5(d) shows the model in which mutual
correction is made after conversion. In this model,
the curvature of the horopter varied from convex to
concave to flat, and was therefore a different shape
than that of a human subject : a horopter curvature
varying from convex to concave with distance
from the subject is never observed in human
subjects.

In the localization model shown in Fig.4(a), the
output was most coincident among the models
with the orthogonal coordinates. Especially in the
vicinity of ¢=0, almost complete coincidence was
seen, and there was no distorted inclination.
However, on this point, this model's results differ
from those of the human subjects.

V. Considerations

From the results of the horopter experiments, it
was found that the firing rate model in which
mutual correction is made before conversion with
a unilateral space learning area best modelled
human space perception among all the models.
On this basis, the signal processing structure of
the coordinate conversion processing system for
human space perception is considered as follows.
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At first, the firing rate model and the
localization model are compared. The output of
the localization model coincides with the
orthogonal coordinate system while the output of
the firing rate models does not. This is because the
localization model functions as something akin to
associative memory and has more general learning
ability for transformation of coordinate systems.
However, the output of this model coincides too
exactly with the orthogonal coordinate system to
accurately model human space perception .
Therefore, although the human brain does have
localization pattern representation, which is the
more general coordinate transformation system, its
representation form is evidently not concerned with
generating the subjective results found in the
horopter and alleys experiments.

Furthermore, from formula (2), the following

relationship can be obtained.
X _ _ E{1+cos(2¢)cos(y)]
Y sin2(y)
X _2Esin(2¢)
a9 sin(y)
9Y _ __Esin(2¢)cos(y)
Iy sin2(y)
Y _ 2E cos(2¢) (6)
9 sin(y)

By this, the following relationship is obtained
over most of the recognition area,
X A% o ™

-_<0,
Iy 9¢

and there are also the following relationships

of expected values over the recognition area.

E(%) sE(g—:,)EO

:When E(X) is X's expected value. (8)
The high correlation between signals represented
by the monotonic relationship between <X and dy,

dY and d¢ may indicate the generation of more’

direct connections between signals. The
possibility of the relationship producing direct
connections between cells without there being
characteristic cells for a space area (cf. Type 3 of
VF neurons whose discharge rates increase most
by gaze fixation of a region specified three
dimensionally in space) is shown by results such
as that of this experiment that one of the firing
rate models best represents actual human space
perception .

In this paper, the signal space is considered as
two-dimensional, but in the firing rate model,
three-dimensional models can be made as the
similar models to two-dimensional models, by
considering Type.l VF neuron with vertical
directional selectivity of gaze. In the localization
model, a nerve field with three-dimensional
topology is required for preserving topology, and

as the topology in the nerve field in the brain is
two-dimensional, the application of model will
generate a problem. As for deficient order, it can
be represented by using a hypercolumn model but
a portion of the topology may be broken. Thus in
this respect also the localization model may not be
suitable as a three-dimensional space perception
model.

Next, the interaction structures of the firing rate
models are compared. The difference between
Fig.3(c) and Fig.3(d) in the firing rate model is
that additive mutual correction processing between
signals is performed before conversion or after it.
This means that the correction processing is
performed in the signal space of the subjective
orthogonal coordinate system (X,Y) in the model
of Fig.3(d), but it is performed in the signal space
of the eye movement signal (7,¢) in Fig.3(c).

The results of the horopter experiment strongly
support the structure represented in Fig.3(c) as a
human depth perception model. From this
tendency, it is possible that the processing system
for the generation and compensation of higher-
order conceptions, such as the frontal parallel
plane, acquired later in the development of space
perception performs information processing in the
form of a primary sensing signal (i.e. eye
movement ), if the scale accuracy on the
conceptive quantity is not essential to a certain
perception. This raises the possibility that the
integration and processing of positional
information in visual space perception are
performed in the eye movement signal space or in
the signal space extremely near it, because
convergence is a main cue of absolute depth in
visual space perception and other cues of relative
depth, such as binocular parallax, are subsequently
integrated with the absolute depth information by
developmental learning.

This conclusion supports the hypothesis that
humans may not use an abstract signal form for
global space representation in information
processing when integrating various sense
modalities in space perception. There is
corroborative physiological evidence to support
this conclusion {10].

VI. Conclusion

In this paper, it is considered that the horopter
and parallel/distance alleys, which have been
thought to be phenomena in psychology, are
actually structural characteristics of signal
processing in the human neural network, resulting
from the learned transformation of binocular eye
movement information into a subjective
orthogonal coordinate system. Psychological and
physiological knowledge offers several space
perception models with different signal processing
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structures. In the learning simulation experiments,
the models generated horopter, parallel alley, and
distance alley results which were similar to those
of a human being.

On the basis of these results, it can be concluded
that the signal processing system in human space
perception uses the essential signal space for each
perception as the signal space for interaction
between signals.

APPENDIX:

A NEURAL NETWORK MODEL FOR
LEARNING NON-LINEAR
CONVERSION
A neural network model for learning the
transformation of (%¢) to (X,Y) in the localization
model is shown in Fig.5(a). The model used in
this study consists of two input cells, which are
internal cells arranged in an nxn lattice with two
output cells. The internal cells form a two-
dimensional nerve field with lateral inhibition.
The model forms a two-dimensional topography
on the nerve field and a desired non-linear
continuous function between input and output
signals by learning of Kohonen's topology-

preserving mapping [9][11])(12).

®
Fig.5.(a) A neural network model with two-
dimensional topology preserving mapping. (b) A
neural network model with one-dimensional
topology preserving mapping.

Cell Njj of the i column and j row in the nxn
nerve field has input weight wi; jj 10 input vector
x, and its activation ajj is represented in this
formula.

N S
% = Taffe-wiy]] @
Provided that I I represents the two-dimensional

norm, the cell group Sf actually firing, (the

center of which is the most activated cell Nfg), is
defined as follows: ,
Sre=\Nijl FRSISF+R and g-RSj<g+R,

when ag=max{a;/i,j=12;-,n} a0

Here, R is the activation interaction radius in the
nerve field.

Provided S is adjacent (2R+1 )2 cell groups
[12], which forms output vector y by synaptic
weight woj;.

y= Zwo,'j /(2R+1)? an

Nije Sfg

Similarly, leamning occurs only for the cells
firing. That is, learning occurs for synaptic
weight wi,-j of cell Njj comprised in ng with
input x,

Awij=a (x-Wi,'j) 2 if NieSy
=0 : otherwise (12)
and similarly for synaptic weight wo;; with
correct output y’
Awo;j=a' (v'-wo,-j) s if NjeSg
=0 : otherwise 13)

In the formulas, « and o’ are learning
coefficients. When learning has sufficiently
progressed, correct input and output are represented
in the following formula,

y'=y=f (x) , x=(xI,x2)

XIminsx,I lemx,xzm,',,SxZ szmax (14)

and the respective weights of the cell groups are
converged as follows,

When wij = ( wigl , wij2 ),

X1 minSwij 1 <wipl < - -<wipnl <xImax
or x1min2wijgl >wijpl > - ->Wiil 2x1 max,
X2 minSWig2 <wini2 <+ -<Wini2 2pay
or X2min2Wijj2 SWig2 >+ >SWin2 2X2max
(15a)

or are converged in the following:
XlminSWipil <wizl <---<win;l <1 max
or x1min2wigil >wizl >« - >wipnjl 2x1 max,
X2minSWii2 <wijp2 <---<Wijp2 SX2max

OF X2min2Wii12 SWijp2 >+ >Wiin2 2X2 max
(15b)
and topography reflecting the topology of input
x is formed [9].
woii=f (wii)) a6

This time, the respective cells react
characteristically to specific regions in the input-
output space, and a desired non-linear continuous
function y=f(x) is established between input and
output.

Further, by utilizing this characteristic, a one-
dimensional model (Fig.5(b)), forming a one-
dimensional topography of one input and one
output, is used as a neural network to learn the
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respective non-linear functions of the firing rate
models. This time, formulas corresponding to
expressions (12) to (19) in the one-dimensional
model are represented in the following formulas
12y o (19,

ai= I1+x-wi}) any

S=|Ni/ £-Rsisf+R |
when a=max{ai i=12;--,n) 12y

y =) woil(2R+Ip
NieSy any
Awi=a (x-wij) 2 if NieSy
=0 : otherwise (12)
Awoi=a' (y'-wo;) : if NeS;
=0 : otherwise (13)
Y'=y=f (%) 5 Xmin<XSmax  (14y
XminSWIj <Wig<- + - <Wip<Xmax
OF Xmin2Wi>Wig>« « - >WipXmar sy
wo;=f (wi}) a6y
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